224 research outputs found
Deflections in Magnet Fringe Fields
A transverse multipole expansion is derived, including the longitudinal
components necessarily present in regions of varying magnetic field profile. It
can be used for exact numerical orbit following through the fringe field
regions of magnets whose end designs introduce no extraneous components, {\it
i.e.} fields not required to be present by Maxwell's equations. Analytic
evaluations of the deflections are obtained in various approximations. Mainly
emphasized is a ``straight-line approximation'', in which particle orbits are
treated as straight lines through the fringe field regions. This approximation
leads to a readily-evaluated figure of merit, the ratio of r.m.s. end
deflection to nominal body deflection, that can be used to determine whether or
not a fringe field can be neglected. Deflections in ``critical'' cases (e.g.
near intersection regions) are analysed in the same approximation.Comment: To be published in Physical Review
Propagation of Large Uncertainty Sets in Orbital Dynamics by Automatic Domain Splitting
Current approaches to uncertainty propagation in astrodynamics mainly refer to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differential algebra has already proven to be an efficient compromise by replacing thousands of pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current implementation of the DA-based high-order uncertainty propagator fails when the non-linearities of the dynamics prohibit good convergence of the Taylor expansion in one or more directions. We solve this issue by introducing automatic domain splitting. During propagation, the polynomial expansion of the current state is split into two polynomials whenever its truncation error reaches a predefined threshold. The resulting set of polynomials accurately tracks uncertainties, even in highly nonlinear dynamics. The method is tested on the propagation of (99942) Apophis post-encounter motion
Detecting chaos in particle accelerators through the frequency map analysis method
The motion of beams in particle accelerators is dominated by a plethora of
non-linear effects which can enhance chaotic motion and limit their
performance. The application of advanced non-linear dynamics methods for
detecting and correcting these effects and thereby increasing the region of
beam stability plays an essential role during the accelerator design phase but
also their operation. After describing the nature of non-linear effects and
their impact on performance parameters of different particle accelerator
categories, the theory of non-linear particle motion is outlined. The recent
developments on the methods employed for the analysis of chaotic beam motion
are detailed. In particular, the ability of the frequency map analysis method
to detect chaotic motion and guide the correction of non-linear effects is
demonstrated in particle tracking simulations but also experimental data.Comment: Submitted for publication in Chaos, Focus Issue: Chaos Detection
Methods and Predictabilit
Measurement of E2 Transitions in the Coulomb Dissociation of 8B
In an effort to understand the implications of Coulomb dissociation
experiments for the determination of the 7Be(p,gamma)8B reaction rate,
longitudinal momentum distributions of 7Be fragments produced in the Coulomb
dissociation of 44 and 81 MeV/nucleon 8B beams on a Pb target were measured.
These distributions are characterized by asymmetries interpreted as the result
of interference between E1 and E2 transition amplitudes in the Coulomb breakup.
At the lower beam energy, both the asymmetries and the measured cross sections
are well reproduced by perturbation theory calculations, allowing a
determination of the E2 strength.Comment: 8 pages, 3 figure
A Comparison of Polarization Observables in Electron Scattering from the Proton and Deuteron
Recoil proton polarization observables were measured for both the p(,e) and d(,en reactions at two values of Q using a newly commissioned proton
Focal Plane Polarimeter at the M.I.T.-Bates Linear Accelerator Center. The
hydrogen and deuterium spin-dependent observables and
, the induced polarization and the form factor ratio
were measured under identical kinematics. The deuterium and
hydrogen results are in good agreement with each other and with the plane-wave
impulse approximation (PWIA).Comment: 9 pages, 1 figure; accepted by Phys. Rev. Let
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
Precision experiments, such as the search for electric dipole moments of
charged particles using storage rings, demand for an understanding of the spin
dynamics with unprecedented accuracy. The ultimate aim is to measure the
electric dipole moments with a sensitivity up to 15 orders in magnitude better
than the magnetic dipole moment of the stored particles. This formidable task
requires an understanding of the background to the signal of the electric
dipole from rotations of the spins in the spurious magnetic fields of a storage
ring. One of the observables, especially sensitive to the imperfection magnetic
fields in the ring is the angular orientation of stable spin axis. Up to now,
the stable spin axis has never been determined experimentally, and in addition,
the JEDI collaboration for the first time succeeded to quantify the background
signals that stem from false rotations of the magnetic dipole moments in the
horizontal and longitudinal imperfection magnetic fields of the storage ring.
To this end, we developed a new method based on the spin tune response of a
machine to artificially applied longitudinal magnetic fields. This novel
technique, called \textit{spin tune mapping}, emerges as a very powerful tool
to probe the spin dynamics in storage rings. The technique was experimentally
tested in 2014 at the cooler synchrotron COSY, and for the first time, the
angular orientation of the stable spin axis at two different locations in the
ring has been determined to an unprecedented accuracy of better than
rad.Comment: 32 pages, 15 figures, 7 table
Phase Measurement for Driven Spin Oscillations in a Storage Ring
This paper reports the first simultaneous measurement of the horizontal and
vertical components of the polarization vector in a storage ring under the
influence of a radio frequency (rf) solenoid. The experiments were performed at
the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched
deuteron beam. Using the new spin feedback system, we
set the initial phase difference between the solenoid field and the precession
of the polarization vector to a predefined value. The feedback system was then
switched off, allowing the phase difference to change over time, and the
solenoid was switched on to rotate the polarization vector. We observed an
oscillation of the vertical polarization component and the phase difference.
The oscillations can be described using an analytical model. The results of
this experiment also apply to other rf devices with horizontal magnetic fields,
such as Wien filters. The precise manipulation of particle spins in storage
rings is a prerequisite for measuring the electric dipole moment (EDM) of
charged particles
Polarization Transfer in the 4He(e,e'p)3H Reaction at Q^2 = 0.8 and 1.3 (GeV/c)^2
Proton recoil polarization was measured in the quasielastic 4He(e,e'p)3H
reaction at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2 with unprecedented precision.
The polarization-transfer coefficients are found to differ from those of the
1H(e,e' p) reaction, contradicting a relativistic distorted-wave approximation,
and favoring either the inclusion of medium-modified proton form factors
predicted by the quark-meson coupling model or a spin-dependent charge-exchange
final-state interaction. For the first time, the polarization-transfer ratio is
studied as a function of the virtuality of the proton
Phase locking the spin precession in a storage ring
This letter reports the successful use of feedback from a spin polarization
measurement to the revolution frequency of a 0.97 GeV/ bunched and polarized
deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control
both the precession rate ( kHz) and the phase of the horizontal
polarization component. Real time synchronization with a radio frequency (rf)
solenoid made possible the rotation of the polarization out of the horizontal
plane, yielding a demonstration of the feedback method to manipulate the
polarization. In particular, the rotation rate shows a sinusoidal function of
the horizontal polarization phase (relative to the rf solenoid), which was
controlled to within a one standard deviation range of rad. The
minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753
kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a
requirement for the use of storage rings to look for an intrinsic electric
dipole moment of charged particles
Mutation-enrichment next-generation sequencing for quantitative detection of KRAS mutations in urine cell-free DNA from patients with advanced cancers
Purpose: Tumor-derived cell-free DNA (cfDNA) from urine of patients with cancer offers noninvasive biological material for detection of cancer-related molecular abnormalities such as mutations in Exon 2 of KRASExperimental Design: A quantitative, mutation-enrichment next-generation sequencing test for detecting KRASG12/G13 mutations in urine cfDNA was developed, and results were compared with clinical testing of archival tumor tissue and plasma cfDNA from patients with advanced cancer.Results: With 90 to 110 mL of urine, the KRASG12/G13 cfDNA test had an analytical sensitivity of 0.002% to 0.006% mutant copies in wild-type background. In 71 patients, the concordance between urine cfDNA and tumor was 73% (sensitivity, 63%; specificity, 96%) for all patients and 89% (sensitivity, 80%; specificity, 100%) for patients with urine samples of 90 to 110 mL. Patients had significantly fewer KRASG12/G13 copies in urine cfDNA during systemic therapy than at baseline or disease progression (P = 0.002). Compared with no changes or increases in urine cfDNA KRASG12/G13 copies during therapy, decreases in these measures were associated with longer median time to treatment failure (P = 0.03).Conclusions: A quantitative, mutation-enrichment next-generation sequencing test for detecting KRASG12/G13 mutations in urine cfDNA had good concordance with testing of archival tumor tissue. Changes in mutated urine cfDNA were associated with time to treatment failure
- …