159 research outputs found
Introducing Originality and Innovation in Engineering Teaching: The Hydraulic Design of Culverts
Recently the teaching of engineering design has become a presentation of standards and codes rather than the learning of sound design practices. Too many students request formulae and equations to solve a design exercise and they fail to develop any design originality. The present student attitude leads to young graduate engineers without critical ability and innovative flair. The writer has developed an innovative hydraulic design exercise based upon culvert design. Each design exercise could lead to more than one correct design per student in the class. Students have to learn basic design calculations based upon lecture material, notes, field visits and laboratory experiment. The practical component (laboratory, field visit) contributes significantly to their understanding of the complete system, including some basic safety and professional issues
Imaging the renal microcirculation in cell therapy
Renal microvascular rarefaction plays a pivotal role in progressive kidney disease. Therefore, modalities to visualize the microcirculation of the kidney will increase our understanding of disease mechanisms and consequently may provide new approaches for evaluating cell-based therapy. At the moment, however, clinical practice is lacking non-invasive, safe, and efficient imaging modalities to monitor renal microvascular changes over time in patients suffering from renal disease. To emphasize the importance, we summarize current knowledge of the renal microcirculation and discussed the involvement in progressive kidney disease. Moreover, an overview of available imaging techniques to uncover renal microvascular morphology, function, and behavior is presented with the associated benefits and limitations. Ultimately, the necessity to assess and investigate renal disease based on in vivo readouts with a resolution up to capillary level may provide a paradigm shift for diagnosis and therapy in the field of nephrology.Nephrolog
Hydraulic Performances of Minimum Energy Loss Culverts in Australia
Culverts are among the most common hydraulic structures. Modern designs do not differ from ancient structures and are often characterised by significant afflux at design flows. A significant advance was the development of the Minimum Energy Loss (MEL) culverts in the late 1950s. The design technique allows a drastic reduction in upstream flooding associated with lower costs. The development and operational performances of this type of structure is presented. The successful operation of MEL culverts for more than 40 years is documented with first-hand records during and after floods. The experiences demonstrate the design soundness while highlighting the importance of the hydraulic expertise of the design engineers
The Prevalence of Norovirus in returning international travelers with diarrhea
Background: There is a high incidence of diarrhea in traveling populations. Norovirus (NV) infection is a common cause of diarrhea and is associated with 7% of all diarrhea related deaths in the US. However, data on the overall prevalence of NV infection in traveling populations is limited. Furthermore, the prevalence of NV amongst travelers returning to Europe has not been reported. This study determined the prevalence of NV among international travelers returning to Germany from over 50 destinations in and outside Europe. Methods: Stool samples of a total of 104 patients with a recent (< 14days) history of international travel (55 male, mean age 37 yrs.) were tested for the presence of NV genogroup (GG) I and II infection using a sensitive and well established quantitative RT PCR method. 57 patients experienced diarrhea at the time of presentation at the Department of Infectious Diseases & Tropical Medicine. The remaining 47 patients had no experience of diarrhea or other gastrointestinal symptoms for at least 14 days prior to their date of presentation at our institute. Results: In our cohort, NV infection was detected in 15.7% of returning travelers with diarrhea. The closer to the date of return symptoms appeared, the higher the incidence of NV, ranging as high as 21.2% within the first four days after return. Conclusions: In our cohort, NV infection was shown to be frequent among returning travelers especially in those with diarrhea, with over 1/5 of diarrhea patients tested positive for NV within the first four days after their return to Germany. Due to this prevalence, routine testing for NV infection and hygienic precautions may be warranted in this group. This is especially applicable to patients at an increased risk of spreading the disease, such as healthcare workers, teachers or food-handlers
A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair
XPA is a central scaffold protein that coordinates the assembly of repair complexes in the global genome (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) subpathways. Inactivating mutations in XPA cause xeroderma pigmentosum ( XP), which is characterized by extreme UV sensitivity and a highly elevated skin cancer risk. Here, we describe two Dutch siblings in their late forties carrying a homozygous H244R substitution in the C-terminus of XPA. They present with mild cutaneous manifestations of XP without skin cancer but suffer from marked neurological features, including cerebellar ataxia. We show that the mutant XPA protein has a severely weakened interaction with the transcription factor IIH (TFIIH) complex leading to an impaired association of the mutant XPA and the downstream endonuclease ERCC1-XPF with NER complexes. Despite these defects, the patient-derived fibroblasts and reconstituted knockout cells carrying the XPAH244R substitution show intermediate UV sensitivity and considerable levels of residual GG-NER (similar to 50%), in line with the intrinsic properties and activities of the purified protein. By contrast, XPA-H244R cells are exquisitely sensitive to transcription-blocking DNA damage, show no detectable recovery of transcription after UV irradiation, and display a severe deficiency in TC-NER-associated unscheduled DNA synthesis. Our characterization of a new case of XPA deficiency that interferes with TFIIH binding and primarily affects the transcription-coupled subpathway of nucleotide excision repair, provides an explanation of the dominant neurological features in these patients, and reveals a specific role for the C-terminus of XPA in TC-NER.Genome Instability and Cance
Balancing the immune response in the brain: IL-10 and its regulation
Background: The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology.
Main body: The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders.
Conclusion: The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.We acknowledge the Portuguese Foundation for Science and Technology (FCT) for providing a PhD grant to DLS (SFRH/BD/88081/2012) and a post-doctoral fellowship to SR (SFRH/BPD/72710/2010). DS, AGC and SR were funded by FEDER through the Competitiveness Factors Operational Programme (COMPETE) and National Funds through FCT under the scope of the project POCI-01-0145-FEDER007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The MS lab was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020âOperacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT in the framework of the project âInstitute for Research and Innovation in Health Sciences â (POCI-01-0145-FEDER-007274). MS is a FCT Associate Investigator. The funding body had no role in the design of the study and collection, analysis, and interpretation of the data and in writing the manuscript
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a âpathway modelsâ, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim
of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases
- âŠ