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Abbreviations
Aβ	� Amyloid beta
ACh	� Acetylcholine
ACL	� ATP-citrate lyase
ACS	� Acetyl-CoA synthetase
APP	� Amyloid precursor protein
AT-1	� Acetyl-CoA transporter
BACE1	� Beta site APP cleaving enzyme 1
ChAT	� Choline acetyltransferase
CT	� Computed tomography
dbcAMP	� Dibutyryl cyclic adenosine monophosphate
ER	� Endoplasmic reticulum
GABA	� Gamma amino butyric acid
LDLR	� Low density lipoproteins receptor
MCT2	� Monocarboxylate transporter 2
MRI	� Magnetic resonance imaging
NAA	� N-Acetyl-l-aspartate
NMR	� Nuclear magnetic resonance
PDHC	� Pyruvate dehydrogenase complex
PET	� Positon emission tomography
PTP	� High permeability anion channels
SPECT	� Single-photon emission computed tomography
TCA	� Tricarboxylic acids cycle
Tg	� Transgenic animals

Brain consists of diverse groups of neuronal cells produc-
ing, accumulating and releasing vast range of different 
signaling compounds and neurotransmitters. Their quantal 
and non-quantal release from each individual neuron nerve 
terminals is activated or inhibited by thousands of signals 
from presynaptic terminals of different neurons and deter-
mines their basic functional competence which is neuro-
transmitter signaling. Also adjacent neuroglial (astroglial 
and microglial) cells exert large number of positive and 

Abstract  There are several systemic and intracerebral 
pathologic conditions, which limit provision and utilization 
of energy precursor metabolites in neuronal cells. Energy 
deficits cause excessive depolarization of neuronal cells 
triggering glutamate-zinc evoked excitotoxic cascade. The 
intracellular zinc excess hits several intraneuronal targets 
yielding collapse of energy balance and impairment func-
tional and structural impairments cholinergic neurons. Dis-
turbances in metabolism of acetyl-CoA, which is a direct 
precursor for energy, acetylcholine, N-acetyl-l-aspartate 
and acetylated proteins synthesis, play an important role 
in these pathomechanisms. Disruption of brain homeosta-
sis activates slow accumulation of amyloid-β1−42, which 
extra and intracellular oligomeric deposits disrupt diverse 
transporting and signaling processes in all membrane struc-
tures of the cell. Both neurotoxic signals may combine 
aggravating detrimental effects on neuronal cell. Different 
neuroglial and neuronal cell types may display differential 
susceptibility to similar pathogenic insults depending on 
specific features of their energy and functional parameters. 
This review, basing on findings gained from cellular and 
animal models of Alzheimer’s disease, discusses putative 
energy/acetyl-CoA dependent mechanism in early and late 
stages of neurodegeneration.
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negative signals modulating neuronal activity. Average 
firing range of brain neurons varies from 5 to 50 Hz. The 
restoration of membrane potential after each depolariza-
tion event requires large amounts of energy. Therefore, 
in the human brain, neurons constituting 10% fraction of 
whole brain cells consume 60–80% of supplied oxygen and 
energy substrates, producing equivalent amounts of energy. 
Hence, overall brain oxidative metabolism is tightly cou-
pled to neuronal activity [1]. Such high demand for energy 
causes that neurons are more susceptible than glial cells to 
any pathologic conditions limiting supply of oxygen and/or 
glucose. On the other hand, glial cell, in the human brain 
are ten times more numerous, but they produce less than 
10% of energy pool. However, they utilize 50% fraction 
of supplied glucose [1]. In rodent brain, glial cells consti-
tute 38% of total cerebral oxidative metabolism [2]. The 
prevalence of glycolysis over oxidative metabolism causes 
that astroglial cells export lactate and other metabolites to 
neurons. Several reports documents and discuss the diver-
sity of intra and intercellular metabolic fluxes of glucose, 
lactate, acetate and acetoacetate in different cellular brain 
compartments [1–4]. Such metabolic diversity of brain 
cells should be reflected by respective differences in pheno-
typic expression and/or specific regulatory mechanisms of 
activities of the enzymes constituting pathways involved or 
linked with energy metabolism. This review provides sum-
mary of quantitative data activity, levels, compartmenta-
tion and regulation of crucial components of brain energy 
metabolism—pyruvate dehydrogenase complex (PDHC) 
and its product acetyl-CoA under physiologic and patho-
logic conditions. The specific interactions between PDHC-
derived acetyl-CoA and acetylcholine (ACh) metabolism 
affecting functions and viability of cholinergic neurons are 
also discussed [5, 6].

Sources of Intramitochondrial Acetyl‑CoA 
in Brain Cells

Glucose and Lactate

The glucose, a main energy precursor for the brain enters 
its extracellular compartments through Glut1 present on 
blood–brain barrier [7]. Neurons take up the glucose by 
high affinity Glut 3 transporter, where it is converted to 
pyruvate in glycolytic pathway. Pyruvate enters mito-
chondria through specific carrier and in the mitochondrial 
matrix is metabolized to acetyl-CoA, by PDHC. This pyru-
vate- derived acetyl-CoA is a principal, direct energy pre-
cursor substrate feeding TCA cycle [3, 5, 6]. The neuronal 
pyruvate pool is also supplemented directly by lactate pro-
duced and released by adjacent astrocytes. It is taken up 
by neurons through major high affinity monocarboxylate 

transporter 2 (MCT2) [7–9]. MCT2 affinity constants to 
lactate/pyruvate are similar to physiologic concentrations 
of these metabolites in brain extracellular compartment 
[10, 11]. This determined the direction of extracellular lac-
tate fluxes toward its uptake by neurons [4]. This lactate 
transport appeared to be fast enough to maintain neurons 
in vitro in culture medium [12]. However, in vivo it could 
not fully replace glucose as an energy precursor. At physio-
logical, 1 mmol/L concentration in extracellular space, lac-
tate may provide up to 10% of total brain energy. However, 
some physiopathological conditions, like vigorous exercise 
or pathologic lactic acidosis, may markedly rise plasma 
lactate, which at 10  mmol/L concentration may cover 
20–25% of total brain energy demands [4]. Hence, glucose 
and lactate constitute system of complementary sources of 
pyruvate and derived acetyl-CoA, which in variable pro-
portions substitute each other in different physiopathologi-
cal situations. Astroglial cells, which are net producer of 
intracerebral lactate possess low affinity MCT1 and four 
transporters with Km values for lactate varying from about 
5–28 mmol/L, respectively. It precludes lactate release out 
of astrocytes as its preferred flux direction [8–10].

Axons constitute relatively large fraction of neuronal 
compartment insulated from extracellular glucose by oligo-
dendrocytic myelin sheets. Therefore, in axons the lactate 
is main metabolic fuel. It is produced in myelinating oli-
godendrocytes and released through MCT1 transporters to 
reach axonal compartment through MCT2 transporters [13, 
14]. The failure of this mechanism in number of demyeli-
nating pathologies, such as multiple sclerosis or inherited 
leukodystrophies, might by an important cause of energy 
deficits in the axon. They would yield the collapse of 
axonal transport and signal transduction followed by irre-
versible destruction of whole neuron [13, 14].

Acetoacetate and β‑Hydroxybutyrate

Brain cells are also capable utilizing so called “ketone 
bodies” [15]. Beta-hydroxybutyrate/acetoacetate incorpo-
ration into TCA cycle is metabolized in mitochondria by 
the pathway including β-hydroxybutyrate dehydrogenase 
(EC 1.1.1.30), oxoacid CoA-transferase (EC 2.8.3.5.) and 
acetoacetyl-CoA thiolase (EC 2.3.1.9) yielding acetyl-CoA 
[15]. However, under normal conditions, acetotacetate/β-
hydroxybutyrate provides negligible amounts of acetyl-
CoA in neurons, as its physiological levels in brain extra-
cellular compartment are about ten times lower than its 
Km for MCT2 being the principal transporter for mono-
carboxylates in the neurons [9–11]. Also value of Km for 
β-hydroxybutyrate against MCT2 is 15 and 2 times higher 
than that those for pyruvate or lactate, respectively. Thus 
at equivalent concentrations the rate of pyruvate utiliza-
tion was five times faster than that of β-hydroxybutyrate. 
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In fact, unlabelled β-hydroxybutyrate, unlike lactate or glu-
tamate, did not decrease 14CO2 production from [614C]glu-
cose in astrocytes from rat brain [16]. However, in condi-
tions increasing β-hydroxybutyrate level in the extracellular 
compartment to milimolar concentrations (starvation, high 
fat diet, uncontrolled diabetes etc), they could be trans-
ported into the neurons through MCT2 system at increased 
rate [9, 17]. In such conditions β-hydroxybutyrate alone 
could cover 25% of synaptosomal demand for maintenance 
of normal acetyl-CoA and ACh levels [17]. In equivalent 
concentrations, it reduced pyruvate/lactate uptake due to 
competition for MCT2 transporter [17]. Recent data dem-
onstrate that β-hydroxybutyrate may prevent death of corti-
cal cultured neurons, induced by glucose deprivation [18].

Acetate

Also, acetate was found to serve as a minor precursor of 
acetyl-CoA in the mammalian brain. Studies on subcellu-
lar fractions of rat brain have shown highest activities of 
acetyl-CoA synthetase (EC 6.2.1.1., ACS) in whole brain 
mitochodria and lower ones in cytoplasmic fraction. On the 
other hand, whole brain and hippocampal nerve terminal 
subfractions displayed several times lower activities of ACS 
indicating its predominant intraglial localization [19–21]. 
In fact, oligodendrocytic clonal cells are able to convert 
exteracellular acetate to acetyl-CoA in mitochondria and 
use it for cytoplasmic synthetic pathways [22]. However, 
the main source of free acetate in mature oligodendrocytes 
is N-acetyl-l-aspartate (NAA) intracellular hydrolysis by 
specific aspartoacylase (EC 3.5.1.15.), located in cytoplas-
mic compartment [23]. Recent immunohistochemical stud-
ies demonstrated almost exclusive localization of acetyl-
CoA synthetase 1 in cytoplasm of oligodendrolial cells 
[24]. Free acetate is further converted to acetyl-CoA by 
ACS and utilized for oligodendrogial fatty acid synthesis 
[23, 24]. Note that in control conditions there are negligible 
levels of free acetate in the brain. In adition, Km value for 
this substrate transport through neuronal MCT2 is highest 
among all monocarboxylates [9]. It could make this path-
way of utilization of acetate inoperative at its physiologic 
extracellular concentrations about 0.05 mmol/L [25]. How-
ever, the concentrations of this metabolite in extracellular 
fluid may rise to milimolar levels in different pathological 
conditions such as intake of ethanol or ingestion of acetic 
acid containing foods [9]. It has been demonstrated, that 
extracellular [13C/14C] acetate is taken up by astrocytes and 
incorporated to glutamine, which is transferred to neurons 
where is used for glutamate/GABA neurotransmitters syn-
thesis [26]. Also, hydrolysis of NAA in oligodendrocytic 
cytoplasm might directly generate sufficiently high concen-
tration of acetate to feed acetyl-CoA synthetase reaction in 
this cellular compartment [23].

On the other hand, in Torpedo marmorata electric cells 
activity of ACS is high. In fact, acetate through this enzyme 
provides bulk acetyl-CoA for both energy and ACh synthe-
sis in this fish [27]. Exogenous acetate is not used for ACh 
synthesis in mammalian brain.

Sources of Cytoplasmic Acetyl‑CoA

Bulk of cytoplasmic acetyl-CoA originates from mitochon-
dria. Under resting conditions their membrane is imper-
meable for acetyl-CoA and other acyl-CoA derivatives. 
Therefore, it has to be transported through mitochondrial 
membrane indirectly as citrate or acetyl-carnitine to be con-
verted back to acetyl-CoA by cytoplasmic ATP-citrate lyase 
(EC 2.3.3.8., ACL) and outer mitochondrial membrane-
bound carnitine acetyl transferase (EC 2.3.1.7), respec-
tively [28, 29]. In depolarized nerve terminals, the exist-
ence of direct transport of acetyl-CoA was demonstrated 
to take place via Ca-dependent high permeability anion 
channels (PTP) [30]. The experiments with specific ACL 
inhibitor (−)hydroxycitrate demonstrated that 30–50% of 
acetyl groups is transported from mitochondria to cyto-
plasm as citrate and used for ACh synthesis [5, 19, 28, 31, 
32]. Studies of subcellular and regional distribution of ACL 
in rat brain revealed its high activity in cholinergic nerve 
terminals and preferential co-expression with vesicular 
ACh transporter [19, 20, 33]. That indicates the existence 
of tight functional and structural links of ACL with com-
partment of ACh synthesis and cholinergic transmission. 
On the other hand, EDTA or voltage-dependent Ca chan-
nels inhibitors brought about 50% inhibition of acetyl-CoA 
transfer to synaptoplasm. It indicates that acetyl-CoA may 
be transported out of mitochondria also directly, through 
Ca-sensitive high permeability anion channels [30, 34].

Small fraction of acetyl-CoA may be synthesized 
directly in cytoplasm by conversion of MCT transported 
acetoacetate directly to acetoacetyl-CoA by acetoacetyl-
CoA synthetase (EC 6.2.1.16.), which subsequently yields 
two particles of acetyl-CoA in cytoplasmic acetoacetyl-
CoA thiolase (EC 2.3.1.9.) reaction [15]. The activation of 
this pathway in brains of diabetic or starving animals was 
documented by the increases in β-hydoxybutyrate utiliza-
tion, acetyl-CoA level and ACh synthesis in synaptosomes 
from brains of streptozotocin-diabetic rats [17].

Also, different groups of neurons, depending on type 
synthesized transmitter may utilize smaller or greater frac-
tion of their acetyl-CoA-energy precursor pool to maintain 
stable level of releasable neurotransmitter pools. The ability 
for quantal neurotransmitter release is an ultimate indica-
tor of neuronal functional competence. For instance, gluta-
matergic neurons utilize glutamine provided by astroglia to 
maintain stable level of glutamate-transmitter pool, thereby 
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preserving fraction of glucose-pyruvate derived acetyl-CoA 
to support energy production in TCA cycle necessary for 
maintenance of membrane potential [4, 26]. Catecholamin-
ergic neurons utilize tyrosine to synthesize their transmitter 
noradrenaline or dopamine interfering directly neither with 
pyruvate nor with glutamate for energy producing path-
ways. On the contrary, cholinergic neurons, require trans-
port of adequate fraction of pyruvate-derived acetyl-CoA 
out of mitochondria to meet their demand for acetyl units 
for cytoplasmic ACh synthesis [5, 6].

Acetyl-L-carnitine through system of mitochondrial 
membrane-bound carnitine acetyl-transferases was dem-
onstrated to take part in the indirect transport of acetyl 
moieties to cytoplasm [35, 36]. It seems however, that it 
provides an additional pool of acetyl-CoA to cytoplasm 
independently of other pathways described above. It may 
explain mechanisms of carnitine/acetyl-carnitine-evoked 
neuroprotection and alleviation of ACh deficits under dif-
ferent cytotoxic conditions [35–37]. Chronic oral applica-
tion of acetyl-l-carnitine to AD patients was reported to 
improve their cognitive function and increase brain energy 
phosphate levels against placebo treated group [38].

Small, yet unknown fraction of cytoplasmic acetyl-CoA 
is further sub-distributed by active transport into endoplas-
mic reticulum (ER) lumen by acetyl-CoA transporter (AT-
1), a member of multiple transporters of SLC33 family [39, 
40]. In ER acetyl-CoA serves as a substrate for transient 
acetylations of lysine groups of many proteins including: 
beta site APP cleaving enzyme 1 (BACE1), low density 
lipoproteins receptor (LDLR), amyloid precursor protein 
(APP) [39]. Deficient import of acetyl-CoA into ER lumen, 
in haploinsufficient mice carrying point mutation (S113R) 
in AT-1, was associated with neurodegeneration, propen-
sity to infections and cancer [41]. On the other hand, hap-
loinsufficiency of AT-1 rescued brain of transgenic mice 
with Alzheimer’s disease (APP695/swe) but not those with 
Huntigton’s disease (R6/2) or amyotrophic lateral sclero-
sis (hSODG93A) [42]. The sources of these discrepancies 
remain unsolved. Among others, there is not known how 
these processes could be affected by acetyl-CoA availabil-
ity in the cytoplasmic compartment, which is likely to be 
reduced in these pathologies [43]. Such thesis is justified 
by the fact that concentration of acetyl-CoA in cytoplasmic 
compartments of nerve terminals or clonal neuronal cell 
bodies (0.003–0.005 mmol/L), appeared to be several times 
lower than its Km for AT-1-mediated transport to endoplas-
mic reticulum (0.014 mmol/L) [30, 36, 44–46]. Therefore, 
several fold alterations of cytoplasmic acetyl-CoA levels, 
taking place in different pathologic and physiologic condi-
tions, may significantly alter rate of acetyl-CoA transport to 
endoplasmic reticulum [30, 34, 45, 46].

Intraneuronal distribution of acetyl-CoA may 
also change depending on its activity and maturity. 

Differentiation of cholinergic SN56 cells with cAMP/RA 
or nerve growth factor caused redistribution of acetyl-CoA 
from mitochondria to cytoplasm, through Ca-activated 
anion channels [47]. Differentiated septal neuronal cho-
linergic cells displayed higher density of voltage gated 
Ca-channels in their plasma membranes yielding greater 
increase of intracellular Ca2+ during their functional depo-
larization [47, 48]. Such shift would be compatible with 
increased demand of mature cholinergic neurons for acetyl-
CoA for ACh synthesis in their cytoplasm. If fact, level of 
acetyl-CoA in cytoplasm correlates positively with rate of 
ACh release, reflecting their ability to conduct transmitter 
signaling [6, 47]. On the other hand, such phenotypic mod-
ification makes mature cholinergic neurons more prone to 
neurogenerative signals due to relative shortage of acetyl-
CoA in their mitochondria [6, 47, 49].

Acetyl‑CoA Metabolism in Nerve Terminals

Nerve terminals form a specific neuronal sub-compartment 
located frequently extremely far from the neuron’s body. 
Thereby, they depend on axonal transport providing pro-
teins, mitochondria and other structural elements from the 
neuronal perikaryon. However, to maintain current meta-
bolic and neurotransmitter functions they must rely on 
direct adequate uptake of glucose and lactate directly from 
surrounding extracellular space and their subsequent con-
version to acetyl-CoA in intrasynaptosomal mitochondria 
[1, 6, 7]. The latter is further distributed between mitochon-
drial energy producing and synaptoplasmic synthetic path-
ways. Pathways of energy and acetyl-CoA metabolism are 
qualitatively similar to those described above.

However, principal and specific function of nerve ter-
minals is quantal release of neurotransmitters during con-
secutive depolarization events, of 10–50  Hz frequency. 
Transmitter pool in nerve terminals has to be instantly 
replenished after each discharge to maintain stable releas-
able neurotransmitter and its functional viability. It implies 
that they should possess greater potential to synthesize 
acetyl-CoA for energy production than non-excitable cells. 
Such requirements concern particularly cholinergic nerve 
terminals that utilize certain fraction of pyruvate derived 
acetyl-CoA for ACh synthesis [5, 6]. In fact, activity and 
protein levels of PDHC subunits in hippocampal or whole 
brain cortex synaptosomes appeared to be 70–120% higher 
than in nonsynaptic compartments [21, 50]. Also levels 
of TCA enzymes: aconitase (EC 4.2.1.3.), NAD-isocitrate 
dehydrogenase (EC 1.1.1.41.), succinyl-CoA ligase (EC 
6.2.1.4), as well as ATP synthase subunits (EC 3.6.3.14.), 
in synaptosomal mitochondria were found to be 2–3 times 
higher than in the non-synaptic ones [50]. Such synapto-
somal phenotype constitutes the base for higher rates of 
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metabolic fluxes linked with energy production, adequate 
to their neurotransmission-linked demands. The activity 
of PDHC in the brain synaptosomes increased several-
fold during postnatal development in parallel to increas-
ing activities of choline acetyltransferase (EC 2.3.1.6., 
ChAT) and enzymes involved in synthesis of glutamate 
and gamma amino butyric acid (GABA), principal neuro-
transmitters of the brain [19, 51–56]. By such a mechanism 
developing neurons increase their acetyl-CoA synthesizing 
capacity in accord with increasing activity of cholinergic 
and other neurotransmitter systems during maturation of 
the brain [5].

Intraterminal mitochondria contained similar or some-
what higher levels of acetyl-CoA as whole brain mitochon-
dria derived for neuronal perikaryons and glial cells [43, 
49, 57]. They were apparently sufficient for feeding tricar-
boxylic acid cycle and maintain nerve terminal viability, 
including their neurotransmitter functions, under in  vitro 
conditions [57–60]. The level of synaptoplasmic acetyl-
CoA depends on rates of its generation in mitochondria 
and transport through their inner membrane. The inhibi-
tion of pyruvate dehydrogenase in  vivo by thiamine defi-
cits, brain amyloidosis or in vitro by aluminum, NO excess 
or 3-bromopyruvate resulted in decrease of acetyl-CoA 
transport to synaptoplasm yielding decrease of intratermi-
nal ACh content and release [34, 43, 45, 57]. Inhibitors of 
acetyl-CoA transport out of the mitochondria attenuated 
ACh metabolism, without affecting PDHC activity (see 
preceeding chapter).

Intercellular Compartmentalization of Brain 
Acetyl‑CoA Metabolism

Functional nuclear magnetic resonance/positon emission 
tomography (NMR/PET) studies of 18F-deoxyglucose and 
other energy substrates uptake in human and animal brains 
reveal existence of marked regional differences under rest-
ing and activating conditions [2, 4, 61]. They reflect mainly 
alterations in energy metabolism of different groups of 
neurons apparently being adequate to their actual neuro-
transmitter activities. It implies that PDHC, as a key rate 
limiting step providing acetyl-CoA for energy production 
and cytoplasmic synthetic pathways, should display respec-
tive differential localization both in brain regions and iso-
lated cell groups. In general, PDHC activity was higher in 
neurons rich brain cortex than in neuroglial white matter 
preparations [62]. Also, cultured rat brain primary neu-
rons displayed four times higher PDHC activity than pri-
mary astrocytes [63]. However, astroglial PDHC was kept 
strongly inhibited by phosphorylation. Dephosphorylation 
by specific phosphatase increased astroglial PDHC to 60% 

of neuronal activity, simultaneously decreasing lactate pro-
duction [63].

However, there was no correlation between ChAT 
reflecting density of cholinergic perikaryons/nerve ter-
minals and PDHC activity, corresponding to acetyl-CoA 
providing capacity in different brain regions [19, 20, 
64–66]. There were also no such associations of PDHC 
with regional distribution of markers for glutamatergic or 
GABA-ergic neurons [67, 68]. There was however strong 
positive correlation between cytoplasmic acetyl-CoA levels 
and Ca-dependent ACh release in cortical synaptosomes 
subjected to different metabolic activators and inhibitors 
[34].

Electrolytic or cholinergic 192IgG-saporin immuno-
toxin-evoked lesions of rat hippocampal regions, caused 
about 80% decreases of ChAT activity and ACh synthesis 
and 35% loses of ACL activity without significant altera-
tions of PDHC activity in synaptosomal fraction [20, 69]. 
The activities of ACL and ChAT were also significantly 
correlated in fractions of large and small synaptosomes 
isolated from rat hippocampus and cerebellum [70]. No 
such interdependence was demonstrated for PDHC. These 
results provide evidence linking ACL with cholinergic 
neurons. They document significance of ACL pathway in 
providing acetyl-CoA to synaptoplasmic compartment syn-
thesizing ACh. On the other hand, high activity of PDHC 
in neuronal cells would secure generally higher, transmit-
ter type-independent energy demands of these brain cells 
irrespective of the synthesized transmitter. However, such 
feature of PDHC expression in neurons would make cho-
linergic ones more vulnerable than noncholinegric ones to 
neurodegeneration due to utilization of additional fraction 
of acetyl-CoA for ACh synthesis (next chapter) [6, 71].

Also, the PDHC activity in cholinergic SN56 septal neu-
roblastoma cells was from 60 to 200% higher than that in 
microglial N9 or astroglial C6 cells, respectively [58, 72]. 
The similar differences between neuronal and glial cells are 
reported for activities of aconitase, NADP-isocitrate dehy-
drogenase and ketoglutarate dehydrogenase complex. It 
yields ATP levels in neuronal cells to be two times higher 
than in microglial cells [58]. On the other hand, in cultured 
brain astrocytes and neurons, ATP levels were similar, 
despite lower rates of oxidative metabolism in the former 
[73]. Similar results were also reported for comparative 
studies of C6 astroglioma and SHSY5Y dopaminergic neu-
roblastoma cells [74]. Such ATP pattern is presumably due 
to much lower energy demands of astroglia than neuronal 
cells [1, 2].

The degree of the expression of the cholinergic pheno-
type may determine overall level and intracellular distri-
bution of acetyl-CoA. Differentiation of SN56 cholinergic 
neuroblastoma cells with nerve growth factor or with, dibu-
tyryl cyclic adenosine monophosphate (dbcAMP)/retinoic 
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acid caused redistribution of acetyl-CoA from mitochon-
drial to cytoplasmic compartment, what was compatible 
with increased rate of ACh synthesis [36, 47]. Cells trans-
fection with additional copy of ChAT cDNA caused several 
fold elevations of ChAT activity and ACh content and over 
twofold decrease of whole cell acetyl-CoA. Thus, there is 
an inverse correlation between expression of cholinergic 
phenotype and size of acetyl-CoA pool in the cholinergic 
neurons [71, 75]. Highly cholinergic cells contain of less 
NAA, due to lower concentration of acetyl-CoA in their 
mitochondria decreasing velocity of aspartate-N-acetyl-
transferase reaction (EC 2.3.1.17.) [47, 72]. Nevertheless, 
these levels of acetyl-CoA are still sufficient to maintain 
citrate synthase activity close to maximal rate [72]. How-
ever, the margin of security becomes apparently narrower 
than in noncholinergic neurons. Therefore, cholinergic neu-
rons are at greater risk developing energy deficits under 
different neurotoxic conditions limiting provision of acetyl-
CoA than the noncholinergic ones [6, 72].

Acetyl‑CoA in Zinc Neurotoxicity

Glutamatergic-excitatory neurons and their terminals con-
stitute largest, approximately 50% fractions of entire neu-
ron’s population and synaptic connections in the brain [76]. 
Synaptic vesicles in glutamatergic nerve terminals were 
found to contain 100  mmol/L glutamate excitatory trans-
mitter and 1 mmol/L Zn [77]. Average whole brain Zn level 
was estimated to be about 0.15  mmol/L [78]. However, 
free cation levels in cellular and extracellular compart-
ments were estimated to be of nanomolar to sub-micro-
molar range, respectively due to covalent functional bind-
ing or complexes formation with numerous proteins [79]. 
Recent meta-analysis of several clinical reports indicates 
0.50  μmol/L as a reference concentration for total Zn in 
cerebro-spinal fluid [80]. Such Zn concentration in synaptic 
cleft, at total protein level in interstitial fluid 0.3–0.6 g/L, 
may be apparently nontoxic due to formation of inactive 
protein-Zn complexes [81, 82]. It has been estimated that 
4 g/L of fetal calf serum proteins, present in standard cul-
ture medium can bind 0.1  mmol/L Zn2+, preventing its 
transfer into the cells [72, 82]. However, in different patho-
logic conditions such as hypoxia, hypoglycemia, inflam-
mation, drug overdose, Zn is co-released with glutamate 
in excessive amounts to synaptic cleft, where its concen-
tration may rise to 0.3 mmol/L [78, 83]. Such levels of Zn 
exceed binding potency proteins present in brain intersti-
tial fluid [72]. In consequence, unbound Zn2+ is taken up 
by postsynaptic neurons, including cholinergic ones, by 
voltage gated Ca-channels and specific inward ZnT3 trans-
porters [84–87]. By such mechanism, Zn2+ accumulating 
in post-synaptic neurons becomes an independent signal 

contributing to glutamatergic excitotoxic cascade [78, 83, 
87]. One should also consider, that age dependent decreases 
of key respiratory chain enzymes, cytochrome oxidase and 
succinic dehydrogenase were reported to trigger primary 
intraneuronal Zn dyshomeostasis, independent of presynap-
tic gluzinergic signals [88]. Post mortem studies of human 
hippocampal tissue found about three times higher levels of 
releasable Zn in synaptic vesicles in AD samples compared 
to age matched controls [89]. That may aggravate toxic 
effects and facilitate formation of Aβ oligomers [89].

There is differential intraneuronal compartmetalization 
of Zn in brain cells. In SN56 cholinergic neuronal cells only 
1% of the total Zn pool is located in mitochondria, where 
its estimated concentration is in range of 10 μmol/L. Aver-
age Zn level in extramitochondrial compartments would 
be about 200 μmol/L [72]. Exposition to pathophysiologi-
cally relevant 0.15  mmol/L Zn caused 100-fold increase 
of Zn content in neuronal mitochondria and fivefold only 
in the extramitochondrial compartments. It indicates that 
mitochondrial elements are main targets of neuro-excito-
toxic effects of Zn [72, 82, 87, 90–93]. Zn-induced energy 
deficits could cause neuronal depolarization. That would 
explain Zn-concentration-dependent increases of Ca levels 
in cytoplasmic and its decreases in mitochondrial compart-
ment [93]. The rise of cytoplasmic Ca would cause release 
of cytochrome c, caspases and other proapoptotic proteins 
and activation of PTP in the mitochondria [71, 94, 95]. 
Hypoglycemia stimulated Zn toxicity in cerebellar gran-
ule neurons inducing their overload with Ca [96]. In this 
manner, excessive levels of Zn in mitochondria and Ca in 
cytoplasm may cooperate in neuronal injury, decreasing 
acetyl-CoA synthesis and increasing its transport out of 
mitochondria, respectively. Such mechanism would be par-
ticularly harmful for highly differentiated cholinergic neu-
rons consuming significant amounts of acetyl-CoA for ACh 
synthesis [82]. These Zn-detrimental effects are compatible 
with numerous data demonstrating early collapse of energy 
production in mitochondrial compartments of AD brains 
[6, 97–101].

In fact, Zn2+ excess in SN56 cholinergic cells, caused 
inhibition of PDHC activity through competition for 
lipoamide binding sites of E2, and E3 subunits of the com-
plex (dihydrolipoamide acetyltransferase EC 2.3.1.12, 
dihydrolipoamide oxidoreductase EC1.6.4.3.), which could 
be prevented or partially reversed by lipoamide excess [82, 
102]. Similar mechanisms contributed to Zn-induced inhi-
bition of α-ketoglutarate dehydrogenase complex (KDHC), 
a rate limiting step for metabolic flux of second part of 
TCA (Fig.  1) [90, 102]. These inhibitory effects, might 
bring about depression of ATP and NAA synthesis in mito-
chondria and ACh synthesis in cytoplasm due to acetyl-
CoA deficits [72, 82]. Zn also caused direct, irreversible 
inhibition other mitochondrial enzymes, both in situ and in 
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cell lysates, including isocitrate NADP+ dehydrogenase and 
aconitase, by direct interaction with Fe–S clusters and other 
essential –SH groups in their active centers (Fig.  1) [82, 
103]. These alterations could aggravate detrimental effects 
of primary, Zn-evoked acetyl-CoA deficits, on TCA-linked 
energy production [72, 82, 93]. Lipoamide overcame these 
disturbances of cell metabolism in concentration depend-
ent manner [82]. One should stress, that enzymes of cyto-
plasmic acetyl-CoA metabolism ACL and ChAT as well as 
membrane bound acetylcholinesterase were not inhibited, 
even by high Zn concentrations [82]. It indicates that inhi-
bition of ACh synthesis and other pathways of cytoplasmic 
acetyl-CoA metabolism, in neurotoxic conditions are sec-
ondary to Zn-impaired synthesis of this metabolite in mito-
chondria (Fig. 1) [6, 93].

Thus, aberrant early redistribution of Zn excess to mito-
chondrial compartment of postsynaptic brain cholinergic 
neurons could be responsible for early acetyl-CoA-linked 
impairment of their viability and neurotransmitter func-
tions preceding and/or triggering structural impairments 
and generation of late Aβ lesions [93, 100, 104]. Such 
claim is supported by postmortem findings in human AD 
brains. They revealed that in cognition-linked Brodmann 
area 46 of frontal cortex of AD brains, inhibitory pattern 
for enzymes of energy metabolism appeared to be very 
similar to that found in Zn-treated SN56 cholinergic cells 
[82, 98].

Different brain areas display variable susceptibility to 
excitotoxic insults. It may result from variable suscepti-
bility of particular neuronal cell types and phenotypes to 
excess of Zn in intercellular space and regional density 
of “gluzinergic” terminals [6, 72, 105–107]. It has been 
shown that same excess of extracellular Zn, caused deeper 
inhibition of PDHC activity, suppression of acetyl-CoA, 
ATP and NAA levels in cultured differentiated septal neu-
ronal cholinergic cells (SN56DC) in comparison to nondif-
ferentiated cholinergic ones (SN56NC). On the contrary, 
differentiated (SHSY5YDC) dopaminergic neuroblastoma 
and (C6DC) astroglioma cells retained full viability in such 
conditions [72]. These differences, may result from differ-
ent rates of Zn uptake, which were higher in SN56DC than 
in SN56NC > SHSY5YDC > C6DC, respectively [72]. It 
means that non-cholinergic cells may require higher con-
centration of extracellular Zn to accumulate comparable 
intracellular levels of the metal. When such standardized 
were applied, intracellular Zn equally suppressed PDHC 
activity and acetyl-CoA levels in all cell types. However, 
only cholinergic neuronal cells were killed in such condi-
tions [72]. These data prove that in cholinergic neurons 
continuous withdrawal of acetyl-CoA for ACh synthe-
sis makes them more susceptible to depression of energy 
metabolism than non-cholinergic neurons or glial cells 
(Fig.  1) [72]. It remains to be tested whether Zn-evoked 

inhibition of NAA provision by neuronal cell will affect 
function and viability of oligodendroglial cells using this 
metabolite as precursor of acetyl-CoA for energy and mye-
lin production [23, 72, 108].

Extracellular Zn, in protein free media, was found to 
facilitate formation of neurotoxic oligomers of Aβ [77, 78, 
83]. There is however, not known whether such process is 
quantitatively significant at physiological cerebrospinal 
fluid concentrations of plasma proteins or in intracellular 
compartments [109]. Nevertheless, Zn and Aβ excesses, 
coexisting in degenerating brain, may exert separate or 
overlapping neurotoxic effects on cellular levels independ-
ent of their own direct affinity interactions.

Acetyl‑CoA and Amyloid β Neurotoxicity

Accumulation of amyloids-β is a hallmark of AD and 
related encephalopathies. Advanced medical imaging with 
computed tomography (CT) or magnetic resonance imag-
ing (MRI), and with single-photon emission computed 
tomography (SPECT) or PET, using specific Aβ ligands 
can help in AD diagnosis and prognosis and exclude other 
cerebral pathology or subtypes of dementia [110–112]. 
There are however reports, that do not correlate the extent 
of amyloidosis with loses of cholinergic neurons in basal 
nuclei and appearance of cognitive deficits [113–115]. 
Age-related tauopathy was proposed as a primary patho-
genic signal [116]. In fact, some elderly people with signifi-
cant amyloidosis in their brains may not present dementia. 
Other clinical studies claim positive correlation between 
total or soluble Aβ accumulation and cognitive decline 
[117–119]. These inconsistencies may be explained by 
the existence of significant individual differences in brain 
compensatory plasticity or by Aβ deposition in areas not 
involved in cognitive functions. On the other hand, there 
is general agreement that level of Aβ1−42 in CSF of AD 
patients is markedly decreased. Therefore, it is proposed as 
laboratory diagnostic marker for all forms of AD, charac-
terized by about 85% sensitivity and specificity [112, 120, 
121]. This phenomenon may explainable by the existence 
of oligo- and polymerization of Aβ followed by its inter-
nalization [122]. The Aβ deposits were detected in mito-
chondrial and ER contributing to describe above suppres-
sion of energy metabolism and Ca sequestration [123, 124]. 
There is in accord with findings, that the regional energy 
hypo metabolism and cholinergic deficits displayed good 
correlations with worsening performance in cognitive tests 
[6, 71, 115, 125, 126]. There are several factors, including 
inheritance of apoE4 gene, contributing to AD morbidity 
[127]. Among carriers of 2 copies of this gene, the preva-
lence of sporadic form AD is 10–30 times higher than in 
those with apoE2/3 isoforms [127]. It has been found, that 
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different pathologies of brain capillary circulation and 
metabolic/endocrine conditions (diabetes, hypoestrogen-
ism) facilitate onset of AD [128, 129]. Transient hypoxic 
and/or hypoperfusion conditions, frequent in elderly people 
brains, may augment Aβ accumulation by activation of γ 
and β-secretases. These proteases catalyze amyloidogenic 
cleavage of amyloid precursor protein (APP) and increase 
Aβ1−42 accumulation in extra- and intracellular compart-
ments of the brain [130].

There is a general thesis that oligomeric extra- and intra-
cellular deposits of Aβ, forming high-permeability non 
regulated Ca-channels in cell membranes including mito-
chondria and endoplasmic reticulum, are the main cause of 
neuronal injury in the course of AD [131, 132]. Neurotoxic 
properties of Aβ have been demonstrated in several experi-
mental paradigms [122, 133, 134].

It has been demonstrated, that Aβ added to the culture 
medium inhibited PDHC and the key enzymes of TCA 
cycle, in primary and clonal neuronal and glial cells [36, 
46, 71, 135, 136]. It resulted in depletion of acetyl-CoA, 
yielding suppression of respiratory chain and ATP levels 
in affected neuronal cells (Fig.  1) [46, 135, 137]. These 
alterations could be aggravated by Aβ-evoked disruption 
of endogenous metal homeostasis, including calcium, iron, 
zinc and copper [78, 83]. Inhibitory effects of Aβ may be 
aggravated by each of these metals. It resulted in additive 
or semi-additive augmentation their suppressive effects on 
oxidative/energy metabolism and cholinergic neurotrans-
mission, yielding increased mortality of differentiated cho-
linergic neurons both in cultures and in brain tissue in situ 
[71, 135]. High conductance Ca-channels formed by Aβ 
oligomers in cell membranes, activated influx of extracel-
lular Ca thereby impairing energy metabolism, inhibiting 
PDHC and KDHC as well as activating PTP and release of 
pro apoptotic peptides, and sirtuin-linked catabolic path-
ways (Fig.  1) [132, 138–141]. Accumulation of extracel-
lular Aβ aggravated suppressive effects of NGF mediated 
by p75 receptors abundantly expressed in cultured septal 
neuronal cells with high expression of cholinergic pheno-
type, yielding different suppressive and neurotoxic reac-
tions [47, 71, 142]. The Aβ also facilitated inflammatory 
responses of microglial cells, that promoted neurodegen-
erative processes through excessive production of inflam-
matory cytokines [143]. However, some reports reveal that 
Aβ accumulation in sensitive regions of human cortex cor-
related neither with loss of cholinergic innervation nor with 
impairment of respective cognitive functions [144]. That 
supports the notion that Aβ should be considered rather as 
an outcome than the cause of AD encephalopathy. Never-
theless, that does not rule out possibility that accumulated 
Aβ may combine with preceding cytotoxic signals, yield-
ing augmentation of neurodegenerative processes [6, 122, 
135]. The thesis on limited contribution of Aβ to energy 

disturbances in AD is supported by the fact that peptide-
evoked alterations in enzymes of acetyl-CoA metabolism in 
cholinergic DCSN56 neuronal cells were weaker than those 
induced by Zn or seen in human AD brains [46, 98, 135]. 
On the other hand, oxidized Aβ in low 20–100 nmol/L con-
centrations caused 50% suppression of ChAT in cultured 
avian retinal cells [125]. The increase of reactive oxygen 
species is one of the features of AD and aging brains [60, 
83].

Different TgAD mice models accumulate variable con-
centrations of Aβ in their brains corresponding to wide 
range of the peptide levels detected in human AD victims 
[43, 117, 145]. Thereby, they constitute a good model to 
study in  vivo pathomechanisms of Aβ in AD including 
energy metabolism and neurotransmitter functions. In most 
transgenic AD mice models the inhibition of brain energy 
metabolism and cognitive deficits were observed relatively 
early when Aβ lesions were not visible [146, 147]. It indi-
cates that early alterations energy metabolism in AD brains 
may not be causally linked with amyloidosis. Such thesis 
is supported by in  vitro studies on brain nerve terminals 
demonstrating that low nontoxic 10–100  nmol/L Aβ1−42 
concentrations inhibited PDHC activity and ACh release/
synthesis due to limited provision acetyl-CoA [136].

Large number of different transgenic animal models (Tg) 
of AD is available. All of them demonstrate age-progress-
ing amyloidosis accompanied by cognitive deficits [145, 
148]. The 2576Tg hemizygous mice containing human 
APP695 gen with K670N/M671L mutations, at age of 
15 month developed deep cognitive deficits at Aβ load of 
0.4–0.6  μmol/kg brain wet weight [43]. Such level corre-
sponded to that seen in AD human brain, in which signifi-
cant functional and structural impairment of energy metab-
olism took place [98, 117, 149, 150]. However, in Tg2576 
brains no decreases in PDHC, KDHC, aconitase and isoci-
trate dehydrogenase NADP were observed neither in synap-
tosomal nor in whole brain mitochondrial fractions. Also, 
no changes in M2 muscarinic receptor binding, ChAT, and 
ACL activities were detected indicating preservation struc-
tural integrity of cholinergic neurons in these animals [43, 
151]. However, in isolated nerve terminals the suppression 
of pyruvate oxidation, mitochondrial and synaptoplasmic 
acetyl-CoA levels took place. Respective decreases in high 
affinity choline uptake, ACh contents and its Ca-dependent 
release were observed in Tg2576 cortex synaptosomes and 
hippocampus [46, 151, 152]. However, fractional ACh was 
not affected supporting thesis on functional not organic 
background for those cholinergic transmission deficits. 
Moreover, no inhibition of pyruvate/acetyl-CoA metabo-
lism was observed in Tg2576 whole brain mitochondria 
indicating full preservation of neuroglial acetyl-CoA 
metabolism in this conditions [43]. The direct effects of Aβ 
were excluded, as its very high concentrations (20 μmol/L) 
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did not inhibit enzymes of energy metabolism in mito-
chondrial lysates [43]. These data are compatible with 
experiments demonstrating no alterations in oxygen uptake 
parameters and ATP synthesis in synaptosomes from aged 
Tg J20, Tg2576 and APP/PS Tg mice [153]. Synaptosomal 
mitochondria from 5× FAD mice accumulated Aβ in age-
dependent manner yielding loss of respiratory control and 
inhibition of oxygen consumption and ATP synthesis [154]. 
Non synaptosomal mitochondria were not affected by this 
pathology [154].

There are however, TgAD models, in which precipitating 
amyloidosis aggravates early pre-amyloid structural loses 
in oxidative and cholinergic metabolism. In Tg mAPP mice 
the number of synaptic but not non synaptic mitochon-
dria decreased and free radical production increased at the 
age of 4 month, when Aβ was undetectable in their brains 
[123]. Aβ accumulation aggravated these lesions [123]. It 
indicates that in this model, structural impairment of the 
neurons was in part independent on Aβ. On the other hand, 
transgenic APPswe × PSEN1dE9 10–14 months mice, 
bearing pathophysiologically relevant 1.6 µmol/kg Aβ1−42, 
displayed no signs of energy production and ACh deficits 
and only significant decrease in glutamate release, being 
far from respective parameters of human AD brain [155]. 
On the contrary other investigators using 3 and 6 month old 
animals of the same strain, displaying none and 0.49 µmol/
kg Aβ1−42 level, respectively detected significant 30–70% 
deficits in complexes I, II and IV of respiratory chain in 
both groups. It indicates existence serious impairments of 
energy metabolism in independent on amyloid load [146]. 
Energy deficits caused by decreased level of PDHC E1α 
subunit, preceded amyloidosis onset in brains of 3× TgAD 
mice [147]. In frontal cortex of APP/PS1 mice, no changes 
in protein levels of PDHC pyruvate dehydrogenase kinase 
and pyruvate kinase took place, but 40% suppression of 
MCT4 was observed, indicating limitation of lactate provi-
sion by astroglia [8, 156].

Also, structural losses of cholinergic neurons may take 
place in some TgAD mice. In nucleus basalis of hAPP Tg 
mice reduction of cholinergic ChAT-positive neurons was 
accompanied by elevation of neuron-suppressive pro-NGF 
peptide [157].

Recent reports reveal that Tg601 mice expressing human 
wild tau protein displayed low glucose uptake and loss of 
ChAT-positive neurons in hippocampus and other regions 
responsible for cognitive functions [116, 158].

Irrespective of enormous metabolic variabilities in 
energy and cholinergic metabolism, the progressing amy-
loidosis accompanied by diverse cognitive deficits, are 
common features for all mice models of AD [145, 148]. 
Marked diversity of qualitative, quantitative and temporal 
alterations in energy, ACh and Aβ metabolism in differ-
ent transgenic mice models of AD might reflect enormous 

variability of this pathology in humans. This may be an 
advantage, that will enable one to match specific TgAD 
animal model with particular individual case of the AD 
in clinic, to establish its personalized metabolic profile 
(Fig. 1).
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