474 research outputs found

    Optical Investigations of CdSe1-x Tex Thin Films

    Get PDF
    The alloys of CdSe1-xTex compound have been prepared from their elements successfully with high purity (99.9999%) which mixed stoichiometry ratio (x=0.0, 0.25, 0.5, 0.75 and 1.0) of (Cd, Se and Te) elements. Films of CdSe1-xTex alloys for different values of composition with thickness(0.5?m) have been prepared by thermal evaporation method at cleaned glass substrates which heated at (473K) under very low pressure (4Ă—10-5mbar) at rate of deposition (3A?/s), after that thin films have been heat treated under low pressure (10-2mbar) at (523K) for two hours. The optical studies revealed that the absorption coefficient (?) is fairly high. It is found that the electronic transitions in the fundamental absorption edge tend to be allowed direct transition. It was also found that the optical energy gap vary non-linearly with composition (x) and have a minimum value at x=0.5 and increases after heat treatment. It is found that the optical constants vary non-linearly with composition, and the behavior inverse at x=0.5, and affected by heat treatment. The behavior of ?1 is similar to the behavior of n, while the behavior of ?2 is similar to the behavior of k

    Geometric and process design of ultra-thin junctionless double gate vertical MOSFETs

    Get PDF
    The junctionless MOSFET architectures appear to be attractive in realizing the Moore’s law prediction. In this paper, a comprehensive 2-D simulation on junctionless vertical double-gate MOSFET (JLDGVM) under geometric and process consideration was introduced in order to obtain excellent electrical characteristics. Geometrical designs such as channel length (Lch) and pillar thickness (Tp) were considered and the impact on the electrical performance was analyzed. The influence of doping concentration and metal gate work function (WF) were further investigated for achieving better performance. The results show that the shorter Lch can boost the drain current (ID) of n-JLDGVM and p-JLDGVM by approximately 68% and 70% respectively. The ID of the n-JLVDGM and p-JLVDGM could possibly boost up to 42% and 78% respectively as the Tp is scaled down from 11nm to 8nm. The channel doping (Nch) is also a critical parameter, affecting the electrical performance of both n-JLDGVM and p-JLDGVM in which 15% and 39% improvements are observed in their respective ID as the concentration level is increased from 1E18 to 9E18 atom/cm3. In addition, the adjustment of threshold voltage can be realized by varying the metal WF

    Barriers to the provision of optimal palliative care in a patient awaiting lung transplantation

    Get PDF
    Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, fatal form of diffuse interstitial lung disease, which is associated with substantial mortality and morbidity. Lung transplantation has become one of the treatments of choice for patients with advanced IPF and has shown a 75% reduction in risk of death compared with patients who remained on the waiting list. Patients undergoing lung transplantation are required to participate in preoperative and postoperative pulmonary rehabilitation. This case report describes palliative and end of life care in a patient with end stage pulmonary fibrosis listed for lung transplantation and discusses the transition from curative restorative care and palliative care to end of life care. The goals of care of patients waiting for lung transplantation should be reviewed regularly and clarified as the clinical condition of the patient changes. End of life care should not only be considered in terminally ill patients or patients who do not fulfil the criteria for lung transplantation, but should also be raised with patients on the lung transplant waiting list. The goal of palliative care is to “enhance quality of life for patient and family, optimize function, and help with decision making” and thus it can be delivered concurrently with life prolonging care.Faisal Ameer and Gregory B Crawfor

    Comparative NO2 Sensing Characteristics of SnO2:WO3 Thin Film Against Bulk and Investigation of Optical Properties of the Thin Film

    Get PDF
    A comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respectively. Hall measurements confirmed that the films are n-type. The NO2 sensing characteristics of the SnO2:WO3 sensors were studied with various temperatures and NO2 gas concentrations. Both thin film and bulk sensors showed maximum sensitivity at temperature of 250 oC. Thin film sensors showed enhanced response in comparison to that of pellets

    Enhancement of Image Transmission Using Chaotic Interleaver over Wireless Sensor Network

    Full text link
    The wireless sensor networks different from classic wired networks, WMSN differs from other scalar network mainly nature and size of data transmitted, memory resources, and power consumption in each node for processing and transmission. The images broadcasting over wireless multimedia sensor networks that can be used in IEEE 802.15.4 (Zig-Bee) for short-range multimedia transmissions. In this paper a strong interleaver mechanism prepared to reduce or immune a burst error of network , this can be done by applying the chaotic interleaving on the pixel, bit ,and chip. The enhancement simulation for bit error rate and peak signal to noise rationnbsp by transceiver image cameraman though AWGN and Rayleigh fadingnbsp channels are displayed. While transmitting the image by 20 dB signal to noise ratio on the Rayleigh fading channel, an improvement on the peak signal to noise ratio of the received image from 25.9 dB to 78.4 dB can be observed

    Temperature and time-dependent effects of delayed blood processing on oxylipin concentrations in human plasma.

    Get PDF
    BACKGROUND:Oxidized derivatives of polyunsaturated fatty acids, collectively known as oxylipins, are labile bioactive mediators with diverse roles in human physiology and pathology. Oxylipins are increasingly being measured in plasma collected in clinical studies to investigate biological mechanisms and as pharmacodynamic biomarkers for nutrient-based and drug-based interventions. Whole blood is generally stored either on ice or at room temperature prior to processing. However, the potential impacts of delays in processing, and of temperature prior to processing, on oxylipin concentrations are incompletely understood. OBJECTIVE:To evaluate the effects of delayed processing of blood samples in a timeframe that is typical of a clinical laboratory setting, using typical storage temperatures, on concentrations of representative unesterified oxylipins measured by liquid chromatography-tandem mass spectrometry. DESIGN:Whole blood (drawn on three separate occasions from a single person) was collected into 5 mL purple-top potassium-EDTA tubes and stored for 0, 10, 20, 30, 60 or 120 min at room temperature or on wet ice, followed by centrifugation at 4 °C for 10 min with plasma collection. Each sample was run in duplicate, therefore there were six tubes and up to six data points at each time point for each oxylipin at each condition (ice/room temperature). Representative oxylipins derived from arachidonic acid, docosahexaenoic acid, and linoleic acid were quantified by liquid chromatography tandem mass spectrometry. Longitudinal models were used to estimate differences between temperature groups 2 h after blood draw. RESULTS:We found that most oxylipins measured in human plasma in traditional potassium-EDTA tubes are reasonably stable when stored on ice for up to 2 h prior to processing, with little evidence of auto-oxidation in either condition. By contrast, in whole blood stored at room temperature, substantial time-dependent increases in the 12-lipoxygenase-derived (12-HETE, 14-HDHA) and platelet-derived (thromboxane B2) oxylipins were observed. CONCLUSION:These findings suggest that certain plasma oxylipins can be measured with reasonable accuracy despite delayed processing for up to 2 h when blood is stored on ice prior to centrifugation. 12-Lipoxygenase- and platelet-derived oxylipins may be particularly sensitive to post-collection artifact with delayed processing at room temperature. Future studies are needed to determine impacts of duration and temperature of centrifugation on oxylipin concentrations

    Performance analysis of ultrathin junctionless double gate vertical MOSFETs

    Get PDF
    The main challenge in MOSFET minituarization is to form an ultra-shallow source/drain (S/D) junction with high doping concentration gradient, which requires an intricate S/D and channel engineering. Junctionless MOSFET configuration is an alternative solution for this issue as the junction and doping gradients is totally eliminated. A process simulation has been developed to investigate the impact of junctionless configuration on the double-gate vertical MOSFET. The result proves that the performance of junctionless double-gate vertical MOSFETs (JLDGVM) are superior to the conventional junctioned double-gate vertical MOSFETs (JDGVM). The results reveal that the drain current (ID) of the n-JLVDGM and p-JLVDGM could be tremendously enhanced by 57% and 60% respectively as the junctionless configuration was applied to the double-gate vertical MOSFET. In addition, junctionless devices also exhibit larger ION/IOFF ratio and smaller subthreshold slope compared to the junction devices, implying that the junctionless devices have better power consumption and faster switching capability

    Performance Comparison of Five-Level Active Neutral Point Converter Based on Phase Disposition-PWM and Alternate Phase Opposition Disposition-PWM

    Get PDF
    The work in this paper presents the performance analysis of the reduced component count converter which is the 5-Level Active Neutral Point Converter (5LANPC). This 5-level converter has been configured by stacking the traditional 3-Level Neutral Point Converter with the Flying Capacitor converter. Two types of control algorithms were considered and compared to explore the performance of the 5LANPC. The first algorithm was based on the Phase-Disposition-Pulse Width Modulation (PD-PWM), while the second one was based on the Alternate Phase Opposition Disposition-Pulse Width Modulation (APOD-PWM). These algorithms are used to determine the required voltage level and according to the required level the state of the switches is selected through a simplified voltage balance algorithm. This voltage balance algorithm deals with the redundant switching states to maintain the voltages of the 5LANPC capacitors at a specified level. The comparison between these two modulation strategies was performed by simulation based on MATLAB/Simulink package. Simulation results showed compelling outcomes involving the two techniques concerning the voltage and current characteristics, as well as the equilibrium in the capacitor voltages. By comparing the simulation results, it was found that the performance of the system is relatively better using the PD-PWM strategy
    • …
    corecore