Comparative NO₂ Sensing Characteristics of SnO₂:WO₃ Thin Film Against Bulk and Investigation of Optical Properties of the Thin Film

Haidar jwad Abdul-Ameer 1*Muthafar F. AL-Hilli 2Mohammed K. Khalaf 3Received 30/1/2018, Accepted 30/5/2018, Published 4/6/2018

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

(cc

A comparative investigation of gas sensing properties of SnO₂ doped with WO₃ based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO₂:WO₃ powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respectively. Hall measurements confirmed that the films are n-type. The NO₂ sensing characteristics of the SnO₂:WO₃ sensors were studied with various temperatures and NO₂ gas concentrations. Both thin film and bulk sensors showed maximum sensitivity at temperature of 250 °C. Thin film sensors showed enhanced response in comparison to that of pellets.

Keywords: WO₃ doped SnO₂; Thin Films; Pellets; NO₂ Gas Sensor; XRD; UV-Vis Spectrometry.

Introduction:

Environmental safety strategy in most countries focused on the regulation, accurate measurement and control of the toxic gases such as H_2S , O_3 , CO, H_2 and NO_2 in the atmosphere. Nowadays, air contamination by nitrogen oxides (NO_x) , mostly NO and NO₂, is becoming a remarkable environmental topic. Nitrogen dioxide (NO_2) is a noxious compound with a bitter odor that is dangerous to the environment as a main reason of acid rain and photochemical smog. NO2 is mostly formed by power plants, combustion engines and automobiles. It can also prompt health difficulties, such as olfactory paralysis. Protection guidelines recommend that humans should not be exposed to more than 3ppm NO₂ gas for time longer than 8 hours. NO₂ accompanying with other pollutants such volatile organic compounds (VOC) is responsible for the creation of ozone. So, it is very required to develop a dependable sensor that can efficiently detect NO₂ even with exceedingly low concentration (1-3).

¹Ministry of Education, Baghdad, Iraq.

The SnO_2 is a semiconductor material extremely transparent and with elevated mechanical and chemical stability, excluding for their interactions with oxygen atoms at high temperature. In addition to its high optical transmission owing to a wide optical band gap approximately 3.8 eV, SnO_2 , thin films have high n-type conductivity, which is because of their non-stoichiometric character related with oxygen vacancies and interstitial tin in the lattice (4-6). The conductivity could be changed from regular semiconducting to degenerate one via properly doping the material and maneuvering the oxygen deficient sites (7). Through the past few decades, SnO₂ has been broadly applied in a wide range of significant applications, such as solid-state gas sensors, liquid crystal displays, thin-film heaters, photovoltaic cells, optical coatings, self-cleaning materials and transparent conducting electrodes (8, 9). It is a fact that the sensor properties can be changed by varying the crystal structure, dopants, preparation method, operation temperature: etc (10-12).

Gas sensors work on the principle of a change in electrical conductance on exposure to the gas which is to be detected (13). The conductivity of SnO_2 sensor rises in the existence of a reducing gases (like CO), and reductions in the existence of an oxidizing gas (like O_2) (14). The structural order and the surface morphology of the material are chief

²Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq.

³Ministry of Science and Technology, Department of Materials Researches, Applied Physics Center, Baghdad, Iraq.

^{*}Corresponding Author: haydarjwad2@yahoo.com

reasons to operate as sensor; therefore, WO_3 doped gas sensors have particular significance due to structural order of WO_3 (15, 16). In this paper, the influence of the operating temperatures over the sensitivity measurements of the films as well as bulk samples are discussed.

The aim of this work is to design a reliable NO_2 gas sensor for environmental protection with high sensitivity, fast response time and fast recovery time from semiconductor metal oxide.

Materials and Methods:

The chemicals SnO_2 and WO_3 in powder form were obtained from (Ferak, Germany, 99.99 % pure) and (The British Drug Houses, England, 99.99 % pure), respectively. 1 % weight of WO₃ powder in SnO₂ have been mixed uniformly and made fine by grinding in mortar with pestle for 1 hour. Then the powders were sintered at 900 °C for 2h and utilized for sensor fabrication. Thin films were prepared by thermal evaporation technique onto ultrasonically and chemically cleaned glass substrates. Film thickness was measured by optical interference method employing a (Angstrom Sun Technologies Inc. SR 300 Spectrometer) and was found to be 134 nm. Bulk sensors in the shape of pellets were prepared by pressing SnO₂:WO₃ powder using die of 15 mm diameter and uniaxial hydraulic press. Al grid were deposited through a mask on front surface of the prepared sensors. Electrical contacts were made by silver paste. The crystal structures of the film was measured by X-ray diffraction (XRD) using a (Shimadza XRD -6000) diffractometer, employing CuK_{α} (1.54 Å) radiation. The optical and electrical characteristic of the films were done by uv-vis spectrometer (Shimadzu uv-1800) and Hall measurement system (Ecopia HMS-3000), respectively.

The sensitivity exams were performed in a closed chamber containing a heating element. The samples were connected to a multimeter (Victor 86 B) and a constant voltage source in order to measure the resistance. The sample temperature was observed and organized by a thermocouple (K-type) joined to the substrate. The sensor response was measured as a function of temperature.

Different concentrations of NO_2 gas (110, 165 and 220 ppm) were inserted into the testing chamber by adjusted leaks through needle valves. A pirani gauge with a rotary pump was utilized to regulator the flow of objective gas in the testing chamber.

The sensor response is defined as (1):

 $S = \frac{R_{g-R_a}}{R_a}$ (1)

Where, R_a and R_g are the sensor resistances in the existing of atmospheric air and objective gas, respectively.

Time period over which sensor resistance decreases to 10% of the saturation value when the objective gas is switched off and the sensor is placed in artificial (or reference) air is the recovery time.

Results and Discussions:

The XRD configuration of SnO_2 :WO₃ thin film is shown in fig. 1. It is clear that the film is polycrystalline in structure. Matching of the observed and of the standard (hkl) planes confirms that the deposited film has a primitive tetragonal structure (17). The film shows a preferred orientation along the (110) plane. The (100), (101), (200), (211), (220) and (310) peaks coincide well with standard data (JCPDS Card No.88-0287) (18). The crystallite size of film was calculated by Debye-Scherrers' formula given by (4):

D=0.9 $\lambda/\beta \cos\theta$

Where λ is the wavelength of X-ray radiation (1.54 Å), β is the full width half maximum (FWHM) of the peak. The rate crystallite size is found to be 52.43 nm. Our results are in close agreement with Tripathy and Hota (10, 19).

(2)

Optical analysis of SnO_2 :WO₃ thin films on glass substrates was performed from transmission percentage versus wavelength curve in the wavelength scope 200 nm to 1100 nm, which is presented in fig. 2. The sensitivity is highly dependent on the optical properties of the film.

The film exhibits a very elevated transmission (>80%) in the visible part owing to the fact that the reflectivity is low and there is low absorption because of excitation of electrons from the valence band to conduction band (20). The films demonstrate an abrupt fundamental absorption edge at about 400 nm. The existence of clear interference fringes configuration in the optical transmittance spectra shows the growth of good quality thin films without any sort of in homogeneity which confirms that SnO₂:WO₃ thin films possess semiconducting properties as it was recognized by Nowak that the pure semiconducting compounds have an abrupt absorption edge (21). In order to get the band gap, the absorption coefficient (α) was calculated from the transmission data via using the following relation (22):

$$\alpha = \frac{\ln \frac{1}{T}}{t} \tag{3}$$

Where t is the film thickness and T is the transmittance. The value of absorption coefficient (α) is 6280 cm⁻¹ as shown in fig. 3. For the direct transition, the optical band gap energy of film was specified by using the equation (22),

 $\alpha = A (hv - E_g)^{1/2} / hv$ (4)

Where A is the corresponding absorption constant, hv is the photon energy and E_g is the optical band gap. From the plot of $(\alpha hv)^2$ vs. hv the band gap is specified by extrapolating the straight line portion of the plot to the energy axis. The cut off on energy axis provides the value of band gap energy which was found to be 2.5 eV as demonstrated in fig. 4.

The extinction coefficient (k) value of film was determined from (23) :

Figure 1. XRD pattern of SnO₂:WO₃ thin film.

Figure 2. Transmittance spectra of SnO₂:WO₃ thin film.

Figure 3. Absorption coefficient vs wavelength of SnO₂:WO₃ thin film.

Figure 4. $(\alpha hv)^2$ vs. hv of SnO₂:WO₃ thin film.

and was found to be 0.024 at the wavelength 496 nm as manifested in Fig. 5.

The extinction coefficient is related to the creation of defects and absorption centers. The refractive index was calculated from the following equation (24):

$$n = \left[\frac{4R}{(R-1)^2} - k^2\right]^{1/2} - \frac{(R+1)}{(R-1)} \tag{6}$$

and was found to be 2.51 as revealed in fig. 6. Nearly similar result is given by K. S. Muhamed and N. R. Muhammed (14). The elevated value of the refractive index may possibly because of high porosity and surface roughness of the films, which is chiefly referred to larger grain size. Sensitivity of thin semiconducting film is extremely reliant on film porosity, film thickness, operating temperature, existent of additives, and crystallite size. However porosity is estimated to have a large influence on sensor sensitivity (10).

The Hall effect measurement revealed that the Hall coefficient, the carrier concentration and the mobility of the films are -1.065×10^{10} cm³/C, -5.863×10^{8} cm⁻³ and 2.725 cm²/V.sec, respectively. The negative sign of the Hall coefficient value exhibits the n-type semiconducting nature of the films. Our result concerning the mobility is in agreement with the study performed by Songqing (8).

It is well recognized that gas sensing is a surface phenomenon and is chiefly organized by the adsorbed oxygen species (25). Doping with WO₃ provides rise to several oxygen species and surface states which lead to enrichment in the gas sensing (7). The fundamental gas sensing properties of the SnO₂:WO₃ thin films and bulk tablets were investigated as a function of operating temperature and test gas concentration. In this study the films were characterized by many factors like sensitivity, response and recovery time. Figure 7 shows the sensitivity to NO₂ gas as a function of operating temperature for thin film and bulk. It is clear that

the maximum sensitivity occurs at temperature of 250°C (26, 27). At low temperatures there is fewer oxygen coverage, when the sensor is exposed to air and thus when target gases are inserted, there is an insignificant variation in sensitivity. As the operating temperature increases, the number of adsorbed oxygen species would have reacted more and more number of electrons which are released due to this reaction sent back to conduction band i.e., desorption average of adsorbed gases increases with increasing temperatures too. As temperature increases further, more and more adsorb oxygen species reacted and more and more electrons sent back to conduction band leading to increase in conductivity. At 225°C, which is known as critical temperature T_C, almost all the adsorb oxygen species reacted and maximum electrons sent back to conduction band leading to maximum sensitivity. The reduction in sensitivity for temperatures over a critical operating temperature, T_C, can be referred to the higher desorption rates at these temperatures. When target gases are inserted , the added desorption owing to the target gases is small relative to the steady-state desorption in air, directing to reducing effect on the sensor response for $T > T_{C}$. The results indicated that the thin film structure has a higher sensitivity than those produced by pellet bulk structure, owing to a larger active surface area of nanostructure, which can offer more active space for the interaction between SnO₂:WO₃ and target gases.

Figure 5. Extinction coefficient vs wavelength of SnO₂:WO₃ thin film.

Figure 6. Refractive index vs wavelength of SnO₂:WO₃ thin film.

Figure 7. Sensitivity vs. operating temperature for SnO₂:WO₃ thin film and bulk.

Smaller grain size in the nanocrystalline material lowers the activation energy and the existence of dispersed W nanocluster over the SnO_2 surface additional reduced the activation energy. This is the reason of lowering the operating temperature of the SnO_2 :WO₃ sensor. However, high surface to volume ratio can be obtained not only by reducing grain size, but also by highly-ordered porous structure (28- 30). Our result is nearly in agreement with Shi *et al.*(31).

The sensitivity of the thin film for 110, 165 and 220 ppm of NO₂ gas concentration at 250 °C against working time is represented in fig. 8. It is detected that the sensitivity rises linearly as the NO₂ concentration increases from 110 ppm to 220 ppm. The linear correlation between the sensitivity and the NO₂ concentration may be because of the availability of adequate number of sensing positions on the film to perform upon the NO₂. The sensitivity at gas concentration below 165 ppm was very low. The response time at gas concentration 165 ppm was around 4 sec and at gas concentration 220 ppm was 2 sec while the recovery time were 50 sec and 120 sec, respectively. Since SnO₂:WO₃ films are n-type semiconductor, the oxidizing NO₂ molecules adsorbed on the oxide surface could captivate electrons shape the conduction band and form NO_2 (32- 34). Our result is nearly similar to that obtained by Bari and Patil (35).

Figure 9 illustrates the response time change with operating temperature. The response time for thin film sensor at low operating temperatures was found to be lower than that of bulk sensor. While at higher temperatures the bulk sensor showed lower response time. In the present work the response time is directly associated to the grain size and the size of the particle boundary in the sensor material.

Figure 10 shows the recovery time versus operating temperature for thin film and bulk gas sensors. The thin film sensor recovery time increased with temperature up to 300°C, and then starts to decrease. While the peak operating temperature for bulk sensor exceeds the maximum testing temperature at 400°C.

The sensor could be used to observe NO_2 gas levels in exhausts at ppm concentrations.

Conclusion:

The influence of the operation temperature and gas concentration over the gas sensing characteristics of SnO₂:WO₃ in thin film and bulk form have been examined. XRD study revealed that the obtained films were polycrystalline with tetragonal structure and the crystalline size to be 52.43 nm. Optical transmittance measurements denote that the deposited thin films have band gap energy equal to 2.5 eV which confirm that these are good semiconducting films. The n-type nature of the films detected from negative sign of the Hall coefficient. These sensors were studied for NO₂ gas sensing and exhibited high sensitivity and fast response and recovery times. The response time for thin film sensor at low operating temperatures was found to be lower than that of bulk sensor, while at higher temperatures the bulk sensor showed lower response time. Thin film is a superior in comparison to bulk for sensitivity measurement. SnO₂ doping by WO_3 is very operative for improving the gas sensing properties of SnO_2 . The results denote that SnO₂·WO₃ the sensors are hopeful for manufacturing applications.

Figure 9. Response time vs. operating temperature for SnO₂:WO₃ thin film and bulk.

Figure 10. Recovery time vs. operating temperature for SnO₂:WO₃ thin film and bulk.

Conflicts of Interest: None.

References:

 Sharma A, Tomar M, Gupta V. SnO₂ thin film sensor with enhanced response for NO₂ gas at lower temperatures, Sensors and Actuators B: Chemical. 2011;156: 743-752.

- Chen C, Lin S, Lin T, Hsu C, Hsueh T, Shieh T. The assessment for sensitivity of a NO₂ gas sensor with ZnGa₂O₄/ZnO core-shell nanowires-a novel approach. Sensors, 2010; 10:3057-3072.
- Garde A. Gas sensing properties of WO₃ thick film resistors prepared by screen printing technique, Int. J. Chem. Phys. Sci. 2016;5(3): 1-13.
- Kocyigit A, Tatar D, Battal A, Ertugrul M, Duzgun B. Highly efficient optoelectronic properties of doubly doped SnO₂ thin film deposited by spin coating technique. J. Ovonic Res. 2012;8(6): 171-8.
- Nagirnyak S, Dontsova T. Effect of modification/doping on gas sensing properties of SnO₂. Nano Res. Appl., 2017;3(2:8): 1-5.
- 6. Nagirnyak S, Lutz V, Dontsova T, Astrelin I. The effect of the synthesis conditions on morphology of tin (IV) oxide obtained by vapor transport method. Springer Proc Phys, 2016;183:331-341.
- Boshta M, Mahmoud F A, and Sayed M H. Characterization of sprayed SnO₂: Pd thin films for gas sensing applications. Journal of Ovonic Research, 2010;6(2): 93-98.
- Songqing Z, Yueliang Z, Shufang W, Kun Z, Peng H. Effect of ambient oxygen pressure on structural, optical and electrical properties of SnO₂ thin films. Rare Metals. 2006;25(6): 1-4.
- Das S and Jayaraman V. SnO₂: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014;66: 112-255.
- Tripathy S K , Hota B P. Carbon monoxide sensitivity of tin oxide thin film synthesized by sol gel method, The African Review of Physics. 2012;7(0047): 401-6.
- 11. Dontsova TA, Nagirnyak SV, Zhorov VV Yasiievych YV. SnO₂ nanostructures: Effect of processing parameters on their structural and functional properties. Nanoscale Res Lett, 2017;12: 1-7.
- 12. Smulko J, Trawka M, Granqvist CG, Ionescu R, Annanouch FE. New approaches for improving selectivity and sensitivity of resistive gas sensors: A review, Proc of the 8th Intern Conf of Sensing Techn, Liverpool, UK. 2014: 13-18.
- 13. Sohn J C, Kim S E, Kim Z W, Yu Y S. H₂S gas sensing properties of SnO₂: CuO thin film sensors prepared by e-beam evaporation. Trans. Electr. Electron. Mater.(Online), 2009;10(4): 135-9.
- 14. Muhamed S K, Muhammed R N. Growth, structural, optical, morphological studies of SnO₂ thin films prepared by spray pyrolysis technique. IJIRSET., 2015;4(5): 3274-8.
- 15. Dhannasare S B, Yawale S S, Unhale S B, Yawale S P. Application of nanosize polycrystalline SnO₂-WO₃ solid material as CO₂ gas sensor. Revista Mexicana de Física. 2012;58: 445-450.
- 16. Li C, Lv M, Zuo J, Huang X. SnO₂ highly sensitive CO gas sensor based on quasi-molecular-imprinting mechanism design, Sensors. 2015;15: 3789-3800.
- 17. Rieu M, Camara M, Tournier G, Viricelle JP, Pijolat C, Rooij N F De, Briand D, Fully inkjet printed SnO₂ gas sensor on plastic substrate. Sens. and Actuators B: Chem., 2016;236: 1091-7.
- 18. Sagadevan S, Podder J. Optical and electrical properties of nanocrystalline SnO₂ thin films

synthesized by chemical bath deposition method, Soft Nano. Lett., 2015;5: 55-64.

- Bhagwat A D, Sawant S S, Ankamwar B G, Mahajan C M. Synthesis of nanostructured tin oxide (SnO₂) powders and thin films by Sol-Gel method, J. Nano Electro. Phys., 2015;7(4): 04037-1 – 04037-4.
- 20. Rajpure K Y, Kusumade M N, Neumann-Spallart M N, Bhosale C H. Effect of Sb doping on properties of conductive spray deposited SnO₂ thin films, J. Mater. Chem. Phys.2000;64:184-188.
- 21. Nowak M. Linear distribution of intensity of radiation reflected from and transmitted through a thin film on a thick substrate. Thin Solid Films. 1995;266: 258-262.
- 22. Zhang X, Li X M, Chen T L, Bian J M, Zhang C Y. Structural and optical properties of Zn_{1-x}MgO thin films deposited by ultrasonic spray pyrolysis. Thin Solid Films. 2005;492: 248-252.
- 23. Mohamed S H, El-Hossary F M, Gamal G A, Kahlid M M. Properties of indium tin oxide thin films deposited on polymer substrates. Acta Physica Polonica A. 2009;115(3): 704-708.
- 24. K. Chopra, Thin film phenomena, (1969) Mc Graw-Hill, USA. PP 733.
- 25. Nalage S, Mane A, Pawar R, Lee C, Patil V. Polypyrrole-NiO hybrid nanocomposite films: highly selective, sensitive, and reproducible NO₂ sensors. Ionics. 2014;20: 1607-1616.
- 26. Zappa D, Bertuna A, Comini E, Kaur N, Poli N, Sberveglieri V, Sberveglieri G, Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors. Beilstein J. Nanotechnol. 2017;8:1205-17.
- 27. Zhang J, Zeng D, Zhu Q, Wu J, Huang Q Xie C. Effect of nickel vacancies on the room-temperature NO₂ sensing properties of mesoporous NiO nanosheets, J. Phys. Chem. C. 2016;120: 3936-45.
- 28. Kamble A S, Pawar R C, Tarwal N L, More L D, Patil P S. Ethanol sensing properties of chemosynthesized CdO nanowires and nanowalls, Mater. Lett. 2011;65: 1488-91.
- 29. Kamble A S, Pawar RC, Patil J Y, Suryavanshi S S, Patil P S. From nanowires to cubes of CdO: Ethanol gas response, J. Alloy. Compd. 2011;509: 1035-39.
- 30. Mizsei J, Lantto V. Simultaneous response of work function and resistivity of some SnO_2 -based samples to H₂ and H₂S. Sens. Actuators B: Chem. 1991;4(1-2): 163-68.
- 31. Shi L Q, Gao W, Hasegawa y, Katsube T, Nakano M, Nakamura K. Highly sensitive SnO₂-based gas sensor for indoor air quality monitoring, Proceedings: Indoor Air. 2005; 3385-88.
- 32. Sadek A Z, Choopum S, Wlodarski W, Ippolito S J, Kalantar-zadeh K. Characterization of ZnO nanobeltbased gas sensor for H₂, NO₂, and hydrocarbon sensing, IEEE Sens. J. 2007;7: 919-24.
- 33. Khalaf M K, Al-Temmeme N A, Ibrahim F T, Hammed M A. Crystalline structure and surface morphology of tin oxide films grown by DC reactive sputtering, Photonic Sensors. 2014;4: 349-53.
- 34. Stanoius A, Somacescu S, Calderon-Moreno J M, Teodorescu V S, Florea O G, Sackmann A, Simion C E. Low level NO₂ detection under humid

background and associated sensing mechanism for mesoporous SnO_2 , Sens. Actuators, B. 2016;231: 166-74.

35. Bari R H, Patil S B. Low temperature NO₂ sensing performance of nanostructured SnO₂ thin films. Scholars Research Library. 2014;5(6): 1-11.

دراسه مقارنه للخصائص التحسسيه لغاز NO₂ لغشاء رقيق و عينه كتليه من مادة SnO₂:WO₃ و أستقصاء الخواص البصريه للغشاء الرقيق

مظفر فؤاد جميل الحلي 2

محمد خماس خلف ³

حيدر جواد عبد الأمير 1

¹ وزارة التربيه، بغداد، العراق

ورارد المربية بسالة العلوم، جامعة بغداد، بغداد، العراق

³ وزارة العلوم و التكنلوجيا، دائرة بحوث المواد، مركز بحوث الفيزياء التطبيقيه

الخلاصة:

تم انجاز بحث مقارن لتحسسية الغاز من مادة SnO₂:WO₃ على شكل غشاء رقيق و عينه كتليه . رسبت الأغشيه الرقيقه على ارضيات زجاجيه بتقنية التبخير الحراري. حضرت العينات الكتليه على شكل اقراص بكبس مسحوق SnO₂:WO₃ . لوحظ من خلال حيود الأشعه السينيه أن الأغشيه متعددة التبلور و تمتلك تركيب رباعي الزوايا وبحجم بلوري mn 52.44 . وجد أن سمك الأغشيه يساوي nn . تم دراسة الخصائص البصريه للأغشيه الرقيقه بأستخدام مطياف UV-VIS في مدى من الأطوال الموجيه nm (100-2000) ، و كانت قيم كل من فجوة حزمة الطاقه و معامل الخمود و معامل أنكسار الغشاء الرقيق V9 2.5 و و 2000 و 2.5 على التوالي. أكدت قياسات هول أن الأغشيه من نوع n . لقد درست الحصائص التصابي التراكيز محادي SnO₂:WO في مدى من الأطوال الموجيه nn الأغشيه من نوع n . لقد درست الخصائص التصابية الموقيق المادة SnO₂:WO لعناء الرقيق NO 2.50 و 2001 ماد 2000 من غاز الأغشيه من نوع n . لقد درست الخصائص التحسسيه لمادة SnO₂:WO لعناء الرقيق NO 2.50 من من الأطوال الموجيه مخالف و المولي من الغشاء الرقيق و العينه المادة المادة SnO₂:WO 2.500 من من الأطوال الموجية من غاز معان من الغشاء الرقيق و العينه المادة المادة SnO₂:WO 2.500 من من المو حيات حرارية مختلفه من غاز NO 2. أن من الغشاء الرقيق و العينه الكتليه اقصى تحسس عند درجة حرارة ⁰ 2000. آظهرت متحسسات الأغشيه الرقيقه استجابه افضل مقارنة بالأقراص.

الكلمات المفتاحية: SnO المطعم ب WO3 ، أغشيه رقيقه، اقراص، متحسس غاز XRD ، NO ، مطياف UV-Vis .