5,258 research outputs found

    Cerenkov angle and charge reconstruction with the RICH detector of the AMS experiment

    Full text link
    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cerenkov (RICH) detector, for measurements of particle electric charge and velocity. In this note, two possible methods for reconstructing the Cerenkov angle and the electric charge with the RICH, are discussed. A Likelihood method for the Cerenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution of around 0.1%. The existence of a large fraction of background photons which can vary from event to event, implied a charge reconstruction method based on an overall efficiency estimation on an event-by-event basis.Comment: Proceedings submitted to RICH 2002 (Pylos-Greece

    Derivation of Matrix Product Ansatz for the Heisenberg Chain from Algebraic Bethe Ansatz

    Full text link
    We derive a matrix product representation of the Bethe ansatz state for the XXX and XXZ spin-1/2 Heisenberg chains using the algebraic Bethe ansatz. In this representation, the components of the Bethe eigenstates are expressed as traces of products of matrices which act on Hˉ{\bar {\mathscr H}}, the tensor product of auxiliary spaces. By changing the basis in Hˉ{\bar {\mathscr H}}, we derive explicit finite-dimensional representations for the matrices. These matrices are the same as those appearing in the recently proposed matrix product ansatz by Alcaraz and Lazo [Alcaraz F C and Lazo M J 2006 {\it J. Phys. A: Math. Gen.} \textbf{39} 11335.] apart from normalization factors. We also discuss the close relation between the matrix product representation of the Bethe eigenstates and the six-vertex model with domain wall boundary conditions [Korepin V E 1982 {\it Commun. Math. Phys.}, \textbf{86} 391.] and show that the change of basis corresponds to a mapping from the six-vertex model to the five-vertex model.Comment: 24 pages; minor typos are correcte

    Analysis of performance parameters of the smash in male and female professional padel

    Get PDF
    The aim of this study was to analyze the distribution and effectiveness of the different types of smash in professional padel according to the area and direction of the strokes and the gender. Through systematic observation, 1.015 smashes from eight finals (four men’s and four women’s) of the professional matches were analyzed. The smashes were categorized into four types of smash: tray, flat, topspin and off the wall. The results showed both men’s and women’s that the tray is the most used smash by padel players, presenting a percentage of point continuity of almost 90%. The flat and topspin smashes are the strokes that achieve the highest percentage of winning points (near 60%), although this efficiency decreases significantly when the players move away from the net area (p < 0.05), especially in the flat smash. Men perform a higher percentage of winning smashes than women, mainly in the flat smash (p = 0.02). Furthermore, with regards to direction, flat and off the wall smashes are predominantly down the line strokes and women perform significantly more cross court topspin smashes than men (p = 0.005). The results shown could be used to design tasks and exercises by padel coaches at professional players

    The physics potential of a reactor neutrino experiment with Skipper CCDs: Measuring the weak mixing angle

    Get PDF
    We analyze in detail the physics potential of an experiment like the one recently proposed by the vIOLETA collaboration: a kilogram-scale Skipper CCD detector deployed 12 meters away from a commercial nuclear reactor core. This experiment would be able to detect coherent elastic neutrino nucleus scattering from reactor neutrinos, capitalizing on the exceptionally low ionization energy threshold of Skipper CCDs. To estimate the physics reach, we elect the measurement of the weak mixing angle as a case study. We choose a realistic benchmark experimental setup and perform variations on this benchmark to understand the role of quenching factor and its systematic uncertainties,background rate and spectral shape, total exposure, and reactor antineutrino flux uncertainty. We take full advantage of the reactor flux measurement of the Daya Bay collaboration to perform a data driven analysis which is, up to a certain extent, independent of the theoretical uncertainties on the reactor antineutrino flux. We show that, under reasonable assumptions, this experimental setup may provide a competitive measurement of the weak mixing angle at few MeV scale with neutrino-nucleus scattering.Comment: 11 pages, 6 figure

    Universal corrections to scaling for block entanglement in spin-1/2 XX chains

    Full text link
    We consider the R\'enyi entropies Sn()S_n(\ell) in the one dimensional spin-1/2 Heisenberg XX chain in a magnetic field. The case n=1 corresponds to the von Neumann ``entanglement'' entropy. Using a combination of methods based on the generalized Fisher-Hartwig conjecture and a recurrence relation connected to the Painlev\'e VI differential equation we obtain the asymptotic behaviour, accurate to order O(3){\cal O}(\ell^{-3}), of the R\'enyi entropies Sn()S_n(\ell) for large block lengths \ell. For n=1,2,3,10 this constitutes the 3,6,10,48 leading terms respectively. The o(1) contributions are found to exhibit a rich structure of oscillatory behaviour, which we analyze in some detail both for finite nn and in the limit nn\to\infty.Comment: 25 pages, 5 figure

    Continuous Matrix Product Ansatz for the One-Dimensional Bose Gas with Point Interaction

    Full text link
    We study a matrix product representation of the Bethe ansatz state for the Lieb-Linger model describing the one-dimensional Bose gas with delta-function interaction. We first construct eigenstates of the discretized model in the form of matrix product states using the algebraic Bethe ansatz. Continuous matrix product states are then exactly obtained in the continuum limit with a finite number of particles. The factorizing FF-matrices in the lattice model are indispensable for the continuous matrix product states and lead to a marked reduction from the original bosonic system with infinite degrees of freedom to the five-vertex model.Comment: 5 pages, 1 figur

    Entanglement entropy of two disjoint blocks in XY chains

    Full text link
    We study the Renyi entanglement entropies of two disjoint intervals in XY chains. We exploit the exact solution of the model in terms of free Majorana fermions and we show how to construct the reduced density matrix in the spin variables by taking properly into account the Jordan-Wigner string between the two blocks. From this we can evaluate any Renyi entropy of finite integer order. We study in details critical XX and Ising chains and we show that the asymptotic results for large blocks agree with recent conformal field theory predictions if corrections to the scaling are included in the analysis correctly. We also report results in the gapped phase and after a quantum quench.Comment: 34 pages, 11 figure

    Entanglement entropy of two disjoint intervals in c=1 theories

    Full text link
    We study the scaling of the Renyi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c=1. We provide the analytic conformal field theory result for the second order Renyi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor network techniques that allowed to obtain the reduced density matrices of disjoint blocks of the spin-chain and to check the correctness of the predictions for Renyi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure

    Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    Get PDF
    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.Comment: 21 pages, 16 figures. Accepted by Phys. Rev. D. Minor revisions to match the accepted versio

    Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam

    Full text link
    The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, \nu_\mu ^{12}C \to \mu^- ^{12}C \pi^+, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67\times 10^{-2} at mean neutrino energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.Comment: 18 pages, 16 figures, Minor revisions to match version accepted for publication in Physical Review
    corecore