15 research outputs found

    Neurological assessment of newborns with spinal muscular atrophy identified through neonatal screening

    Get PDF
    The possibility to identify patients with spinal muscular atrophy through neonatal screenings has highlighted the need for clinical assessments that may systematically evaluate the possible presence of early neurological signs. The aim of this study was to use the Hammersmith Neonatal Neurological Examination (HNNE) and a module specifically designed for floppy infants to assess the possible variability of neurological findings in infants identified through neonatal screening. The infants included in this study were identified as part of a pilot study exploring neonatal screening in two Italian regions. A neurological examination was performed using the HNNE and an additional module developed for the assessment of floppy infants. Seventeen infants were identified through the screening. One patient had 1 SMN2 copy, 9 had 2 copies, 3 had 3, and 4 had more than 3 copies. Nine of the 17 infants (53%) had completely normal results on both scales, 3 had minimal signs, and the other 5 had more obvious clinical signs. The number of SMN2 copies was related to the presence of abnormal neurological signs (p = 0.036) but two SMN2 copies were associated with variable clinical signs as they were found in some infants with respectively normal examination or obvious severe early signs. Conclusions: Our results suggest that the combination of both scales increases the possibility to detect neonatal neurological signs and to define different early patterns of involvement also identifying paucisymptomatic patients.What is Known:• The use of new therapeutic options in presymptomatic SMA patients leads to a dramatic reduction of the onset and severity of the diesease.• The already existing tools commonly used in Type I SMA (HINE and CHOP-intend) may not be suitable to identify minor neurological signs in the neonatal period.What is New:• Combining the HNNE and the floppy infant module, we were able to identify early neurological signs in SMA infants identified through newborn screening and may help to predict the individual therapeutic outcome of these patients.• Iinfants with 2 SMN2 copies identified through the screening had a more variable neonatal examination compared to those with three or more copies, in agreement with similar findings in older infants

    Evaluation of gene validity for CPVT and short QT syndrome in sudden arrhythmic death

    Get PDF
    Aims Catecholaminergic polymorphic ventricular tachycardia (CPVT) and short QT syndrome (SQTS) are inherited arrhythmogenic disorders that can cause sudden death. Numerous genes have been reported to cause these conditions, but evidence supporting these gene–disease relationships varies considerably. To ensure appropriate utilization of genetic information for CPVT and SQTS patients, we applied an evidence-based reappraisal of previously reported genes. Methods and results Three teams independently curated all published evidence for 11 CPVT and 9 SQTS implicated genes using the ClinGen gene curation framework. The results were reviewed by a Channelopathy Expert Panel who provided the final classifications. Seven genes had definitive to moderate evidence for disease causation in CPVT, with either autosomal dominant (RYR2, CALM1, CALM2, CALM3) or autosomal recessive (CASQ2, TRDN, TECRL) inheritance. Three of the four disputed genes for CPVT (KCNJ2, PKP2, SCN5A) were deemed by the Expert Panel to be reported for phenotypes that were not representative of CPVT, while reported variants in a fourth gene (ANK2) were too common in the population to be disease-causing. For SQTS, only one gene (KCNH2) was classified as definitive, with three others (KCNQ1, KCNJ2, SLC4A3) having strong to moderate evidence. The majority of genetic evidence for SQTS genes was derived from very few variants (five in KCNJ2, two in KCNH2, one in KCNQ1/SLC4A3). Conclusions Seven CPVT and four SQTS genes have valid evidence for disease causation and should be included in genetic testing panels. Additional genes associated with conditions that may mimic clinical features of CPVT/SQTS have potential utility for differential diagnosis

    Development of new microalgae-based sourdough "crostini": functional aspects of Arthrospira platensis (spirulina) addition

    Get PDF
    The aim of this work was to evaluate the influence of Arthrospira platensis F&M-C256 (spirulina) incorporation on the nutritional and functional properties of “crostini”, a leavened bakery product largely consumed in Italy and Europe. Sourdough was used as leavening and fermentation agent and three concentrations of A. platensis F&M-C256 were tested: 2%, 6% and 10% (w/w). Despite a lower volume increase compared to the control, the A. platensis F&M-C256 “crostini” doughs reached a technological appropriate volume after fermentation. At the end of fermentation, no significant differences in microorganisms concentrations were observed. A. platensis F&M-C256 “crostini” showed higher protein content compared to the control. Considering the European Commission Regulation on nutritional claims, “crostini” incorporated with 6% and 10% biomass can be claimed to be a “source of protein”. Six and ten percent A. platensis “crostini” also presented significantly higher antioxidant capacity and phenolics. A significantly lower value of in vitro dry matter and protein digestibility between A. platensis F&M-C256 “crostini” and the control was found. The overall acceptability decreased with increasing A. platensis F&M-C256 addition. The combination of spirulina biomass addition and the sourdough technology led to the development of a novel microalgae-based bakery product with nutritional and functional featuresinfo:eu-repo/semantics/publishedVersio

    Exome sequencing of ATP1A3-negative cases of alternating hemiplegia of childhood reveals SCN2A as a novel causative gene

    Get PDF
    Alternating hemiplegia of childhood (AHC) is a rare neurodevelopment disorder that is typically characterized by debilitating episodic attacks of hemiplegia, seizures, and intellectual disability. Over 85% of individuals with AHC have a de novo missense variant in ATP1A3 encoding the catalytic alpha 3 subunit of neuronal Na+/K+ ATPases. The remainder of the patients are genetically unexplained. Here, we used next-generation sequencing to search for the genetic cause of 26 ATP1A3-negative index patients with a clinical presentation of AHC or an AHC-like phenotype. Three patients had affected siblings. Using targeted sequencing of exonic, intronic, and flanking regions of ATP1A3 in 22 of the 26 index patients, we found no ultra-rare variants. Using exome sequencing, we identified the likely genetic diagnosis in 9 probands (35%) in five genes, including RHOBTB2 (n = 3), ATP1A2 (n = 3), ANK3 (n = 1), SCN2A (n = 1), and CHD2 (n = 1). In follow-up investigations, two additional ATP1A3-negative individuals were found to have rare missense SCN2A variants, including one de novo likely pathogenic variant and one likely pathogenic variant for which inheritance could not be determined. Functional evaluation of the variants identified in SCN2A and ATP1A2 supports the pathogenicity of the identified variants. Our data show that genetic variants in various neurodevelopmental genes, including SCN2A, lead to AHC or AHC-like presentation. Still, the majority of ATP1A3-negative AHC or AHC-like patients remain unexplained, suggesting that other mutational mechanisms may account for the phenotype or that cases may be explained by oligo- or polygenic risk factors.Genetics of disease, diagnosis and treatmen

    DETECTION OF OCHRATOXIGENIC ASPERGILLI ON GRAPE BERRIES DURING DRYING FOR PRODUCTION OF “VIN SANTO”

    No full text
    Aspergillus carbonarius, A. niger and A. tubingensis are known to produce ochratoxin A (OTA), a secondary metabolite with very dangerous effects to animals and humans. The International Agency for Research on Cancer has classified OTA as a possible carcinogen to humans (group 2B). As a consequence, the European Commission has imposed regulatory limits for the maximum tolerable presence of this toxin in different foodstuffs. After cereals, grape products are accounted as a considerable source of human OTA intake. Based on the fungal requirements of environmental temperature and relative humidity, it is easy to suppose that wines, as the Tuscan “Vin Santo”, obtained from grapes partially dried for several months to concentrate sugar content to at least 30% (w/v), are potentially at risk more than table wines. In the present work, done in the “Azienda Agricola Montepaldi” (San Casciano Val di Pesa, Florence), we isolated from grape berries about 6x107 CFU, divided into six major fungal morphotypes. Among these 24 were typical colonies of Aspergillus spp. These colonies were processed in parallel using: (i) conventional culture methods that allowed their morphological description; (ii) a molecular approach based on sequencing of the internal transcribed spacer (ITS) region comprising the ITS1, the ITS2, and the intervening 5.8S rRNA gene. Due to the known high intraand interspecific variability of the ITS region, it was not difficult to identify the fungal morphotypes isolated from the berries. The Aspergilli belonged to the species A. tubingensis. Analysis to find isolates producing OTA is ongoing

    Spinal muscular atrophy associated with progressive myoclonic epilepsy: A rare condition caused by mutations in ASAH1

    No full text
    To present the clinical features and the results of laboratory investigations in three patients with spinal muscular atrophy associated with progressive myoclonic epilepsy (SMA-PME), a rare condition caused by mutations in the N-acylsphingosine amidohydrosilase 1 (ASAH1) gene

    SMA-miRs (MiR-181a- 5p, -324-5p, and -451a) are overexpressed in spinal muscular atrophy skeletal muscle and serum samples

    Get PDF
    Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by the degeneration of the second motor neuron. The phenotype ranges from very severe to very mild forms. All patients have the homozygous loss of the SMN1 gene and a variable number of SMN2 (generally 2–4 copies), inversely related to the severity. The amazing results of the available treatments have made compelling the need of prognostic biomarkers to predict the progression trajectories of patients. Besides the SMN2 products, few other biomarkers have been evaluated so far, including some miRs. Methods: We performed whole miRNome analysis of muscle samples of patients and controls (14 biopsies and 9 cultures). The levels of muscle differentially expressed miRs were evaluated in serum samples (51 patients and 37 controls) and integrated with SMN2 copies, SMN2 full-length transcript levels in blood and age (SMA-score). Results: Over 100 miRs were differentially expressed in SMA muscle; 3 of them (hsa-miR-181a-5p, -324-5p, -451a; SMA-miRs) were significantly upregulated in the serum of patients. The severity predicted by the SMA-score was related to that of the clinical classification at a correlation coefficient of 0.87 (p<10-5). Conclusions: MiRNome analyses suggest the primary involvement of skeletal muscle in SMA pathogenesis. The SMA-miRs are likely actively released in the blood flow; their function and target cells require to be elucidated. The accuracy of the SMA-score needs to be verified in replicative studies: If confirmed, its use could be crucial for the routine prognostic assessment, also in presymptomatic patients

    Neurological assessment of newborns with spinal muscular atrophy identified through neonatal screening

    No full text
    The possibility to identify patients with spinal muscular atrophy through neonatal screenings has highlighted the need for clinical assessments that may systematically evaluate the possible presence of early neurological signs. The aim of this study was to use the Hammersmith Neonatal Neurological Examination (HNNE) and a module specifically designed for floppy infants to assess the possible variability of neurological findings in infants identified through neonatal screening. The infants included in this study were identified as part of a pilot study exploring neonatal screening in two Italian regions. A neurological examination was performed using the HNNE and an additional module developed for the assessment of floppy infants. Seventeen infants were identified through the screening. One patient had 1 SMN2 copy, 9 had 2 copies, 3 had 3, and 4 had more than 3 copies. Nine of the 17 infants (53%) had completely normal results on both scales, 3 had minimal signs, and the other 5 had more obvious clinical signs. The number of SMN2 copies was related to the presence of abnormal neurological signs (p = 0.036) but two SMN2 copies were associated with variable clinical signs as they were found in some infants with respectively normal examination or obvious severe early signs. Conclusions: Our results suggest that the combination of both scales increases the possibility to detect neonatal neurological signs and to define different early patterns of involvement also identifying paucisymptomatic patients.What is Known:• The use of new therapeutic options in presymptomatic SMA patients leads to a dramatic reduction of the onset and severity of the diesease.• The already existing tools commonly used in Type I SMA (HINE and CHOP-intend) may not be suitable to identify minor neurological signs in the neonatal period.What is New:• Combining the HNNE and the floppy infant module, we were able to identify early neurological signs in SMA infants identified through newborn screening and may help to predict the individual therapeutic outcome of these patients.• Iinfants with 2 SMN2 copies identified through the screening had a more variable neonatal examination compared to those with three or more copies, in agreement with similar findings in older infants

    Experience of a 2-year spinal muscular atrophy NBS pilot study in Italy: towards specific guidelines and standard operating procedures for the molecular diagnosis

    No full text
    Background: Spinal muscular atrophy (SMA) is due to the homozygous absence of SMN1 in around 97% of patients, independent of the severity (classically ranked into types I-III). The high genetic homogeneity, coupled with the excellent results of presymptomatic treatments of patients with each of the three disease-modifying therapies available, makes SMA one of the golden candidates to genetic newborn screening (NBS) (SMA-NBS). The implementation of SMA in NBS national programmes occurring in some countries is an arising new issue that the scientific community has to address. We report here the results of the first Italian SMA-NBS project and provide some proposals for updating the current molecular diagnostic scenario. Methods: The screening test was performed by an in-house-developed qPCR assay, amplifying SMN1 and SMN2. Molecular prognosis was assessed on fresh blood samples. Results: We found 15 patients/90885 newborns (incidence 1:6059) having the following SMN2 genotypes: 1 (one patient), 2 (eight patients), 2+c.859G>C variant (one patient), 3 (three patients), 4 (one patient) or 6 copies (one patient). Six patients (40%) showed signs suggestive of SMA at birth. We also discuss some unusual cases we found. Conclusion: The molecular diagnosis of SMA needs to adapt to the new era of the disease with specific guidelines and standard operating procedures. In detail, SMA diagnosis should be felt as a true medical urgency due to therapeutic implications; SMN2 copy assessment needs to be standardised; commercially available tests need to be improved for higher SMN2 copies determination; and the SMN2 splicing-modifier variants should be routinely tested in SMA-NBS. Keywords: Genetic Testing; Genetics, Population; Neonatal Screening; Neuromuscular Diseases

    De novo mutations in ATP1A3 cause alternating hemiplegia of childhood

    No full text
    Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurological manifestations. AHC is usually a sporadic disorder and has unknown etiology. We used exome sequencing of seven patients with AHC and their unaffected parents to identify de novo nonsynonymous mutations in ATP1A3 in all seven individuals. In a subsequent sequence analysis of ATP1A3 in 98 other patients with AHC, we found that ATP1A3 mutations were likely to be responsible for at least 74% of the cases; we also identified one inherited mutation in a case of familial AHC. Notably, most AHC cases are caused by one of seven recurrent ATP1A3 mutations, one of which was observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset dystonia-parkinsonism, AHC-causing mutations in this gene caused consistent reductions in ATPase activity without affecting the level of protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in ATP1A3
    corecore