22,105 research outputs found

    Determination of spin polarization in InAs/GaAs self-assembled quantum dots

    Full text link
    The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition energies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when B∥[001]\mathbf{B}\parallel[001] and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field B\mathbf{B} orientation and strength could be determined.Comment: 3 pages, 2 figures, Accepted Appl. Phys. Let

    Lande g-tensor in semiconductor nanostructures

    Get PDF
    Understanding the electronic structure of semiconductor nanostructures is not complete without a detailed description of their corresponding spin-related properties. Here we explore the response of the shell structure of InAs self-assembled quantum dots to magnetic fields oriented in several directions, allowing the mapping of the g-tensor modulus for the s and p shells. We found that the g-tensors for the s and p shells show a very different behavior. The s-state in being more localized allows the probing of the confining potential details by sweeping the magnetic field orientation from the growth direction towards the in-plane direction. As for the p-state, we found that the g-tensor modulus is closer to that of the surrounding GaAs, consistent with a larger delocalization. These results reveal further details of the confining potentials of self-assembled quantum dots that have not yet been probed, in addition to the assessment of the g-tensor, which is of fundamental importance for the implementation of spin related applications.Comment: 4 pages, 4 figure

    A Link Between the Semi-Major Axis of Extrasolar Gas Giant Planets and Stellar Metallicity

    Full text link
    The fact that most extrasolar planets found to date are orbiting metal-rich stars lends credence to the core accretion mechanism of gas giant planet formation over its competitor, the disc instability mechanism. However, the core accretion mechanism is not refined to the point of explaining orbital parameters such as their unexpected semi-major axes and eccentricities. We propose a model, which correlates the metallicity of the host star with the original semi-major axis of its most massive planet, prior to migration, considering that the core accretion scenario governs giant gas planet formation. The model predicts that the optimum regions for planetary formation shift inward as stellar metallicity decreases, providing an explanation for the observed absence of long period planets in metal-poor stars. We compare our predictions with the available data on extrasolar planets for stars with masses similar to the mass of the Sun. A fitting procedure produces an estimate of what we define as the Zero Age Planetary Orbit (ZAPO) curve as a function of the metallicity of the star. The model also hints that the lack of planets circling metal-poor stars may be partly caused by an enhanced destruction probability during the migration process, since the planets lie initially closer to the central stars.Comment: Nature of the replacement: According to recent simulations, the temperature profile, T, is more adequately reproduced by beta = 1 rather than beta = 2. We have introduced a distance scale factor that solves the very fast drop of T for low metallicity and introduces naturally the inferior distance limit of our ZAPO. Under this modification all the fitting process was altere

    A kinematic study of central compact objects and their host supernova remnants

    Full text link
    Context. Central compact objects (CCOs) are a peculiar class of neutron stars, primarily encountered close to the center of young supernova remnants (SNRs) and characterized by thermal X-ray emission. Aims. Our goal is to perform a systematic study of the proper motion of all known CCOs with appropriate data available. In addition, we aim to measure the expansion of three SNRs within our sample to obtain a direct handle on their kinematics and age. Methods. We analyze multiple archival Chandra data sets, consisting of HRC and ACIS observations separated by temporal baselines between 8 and 15 years. In order to correct for systematic astrometric uncertainties, we establish a reference frame using X-ray detected sources in Gaia DR2, to provide accurate proper motion estimates for our target CCOs. Complementarily, we use our coaligned data sets to trace the expansion of three SNRs by directly measuring the spatial offset of various filaments and ejecta clumps between different epochs. Results. In total, we present new proper motion measurements for six CCOs, among which we do not find any indication of a hypervelocity object. We tentatively identify direct signatures of expansion for the SNRs G15.9+0.2 and Kes 79, at estimated significance of 2.5σ2.5\sigma and 2σ2\sigma, respectively. Moreover, we confirm recent results by Borkowski et al., measuring the rapid expansion of G350.1−-0.3 at almost 6000 km s−16000\,{\rm km\,s^{-1}}, which places its maximal age at 600−700600-700 years. The observed expansion, combined with the rather small proper motion of its CCO, implies the need for a very inhomogeneous circumstellar medium to explain the highly asymmetric appearance of the SNR. Finally, for the SNR RX J1713.7−-3946, we combine previously published expansion measurements with our measurement of the CCO's proper motion to obtain a constraining upper limit of 17001700 years on the system's age.Comment: 22+8 pages, 16+3 figures. Accepted for publication in Astronomy & Astrophysic

    The final COS-B database now publicly available

    Get PDF
    The data obtained by the gamma ray satellite COS-B was processed, condensed and integrated together with the relevant mission and experiment parameters into the Final COS-B Database. The database contents and the access programs available with the database are outlined. The final sky coverage and a presentation of the large scale distribution of the observed Milky Way emission are given. The database is announced to be available through the European Space Agency

    Forming Disk Galaxies in Lambda CDM Simulations

    Full text link
    We used fully cosmological, high resolution N-body + SPH simulations to follow the formation of disk galaxies with rotational velocities between 135 and 270 km/sec in a Lambda CDM universe. The simulations include gas cooling, star formation, the effects of a uniform UV background and a physically motivated description of feedback from supernovae. The host dark matter halos have a spin and last major merger redshift typical of galaxy sized halos as measured in recent large scale N--Body simulations. The simulated galaxies form rotationally supported disks with realistic exponential scale lengths and fall on both the I-band and baryonic Tully Fisher relations. An extended stellar disk forms inside the Milky Way sized halo immediately after the last major merger. The combination of UV background and SN feedback drastically reduces the number of visible satellites orbiting inside a Milky Way sized halo, bringing it in fair agreement with observations. Our simulations predict that the average age of a primary galaxy's stellar population decreases with mass, because feedback delays star formation in less massive galaxies. Galaxies have stellar masses and current star formation rates as a function of total mass that are in good agreement with observational data. We discuss how both high mass and force resolution and a realistic description of star formation and feedback are important ingredients to match the observed properties of galaxies.Comment: Revised version after the referee's comments. Conclusions unchanged. 2 new plots. MNRAS in press. 20 plots. 21 page

    The final COS-B database: In-flight calibration of instrumental parameters

    Get PDF
    A method for the determination of temporal variation of sensitivity is designed to find a set of parameters which lead to maximum consistency between the intensities derived from different observation periods. This method is briefly described and the resulting sensitivity and background variations presented

    An estimate of attributable cases of alzheimer disease and vascular dementia due to modifiable risk factors. the impact of primary prevention in europe and in italy

    Get PDF
    Background: Up to 53.7% of all cases of dementia are assumed to be due to Alzheimer disease (AD), while 15.8% are considered to be due to vascular dementia (VaD). In Europe, about 3 million cases of AD could be due to 7 potentially modifiable risk factors: diabetes, midlife hypertension and/or obesity, physical inactivity, depression, smoking, and low educational level. Aims: To estimate the number of VaD cases in Europe and the number of AD and VaD cases in Italy attributable to these 7 potentially modifiable risk factors. Methods: Assuming the nonindependence of the 7 risk factors, the adjusted combined population attributable risk (PAR) was estimated for AD and VaD. Results: In Europe, adjusted combined PAR was 31.4% for AD and 37.8% for VaD. The total number of attributable cases was 3,033,000 for AD and 873,000 for VaD. In Italy, assuming a 20% reduction of the prevalence of each risk factor, adjusted combined PAR decreased from 45.2 to 38.9% for AD and from 53.1 to 46.6% for VaD, implying a 6.4 and 6.5% reduction in the prevalence of AD and VaD, respectively. Conclusion: A relevant reduction of AD and VaD cases in Europe and Italy could be obtained through primary prevention
    • …
    corecore