426 research outputs found

    The fastest unbound star in our Galaxy ejected by a thermonuclear supernova

    Get PDF
    Hypervelocity stars (HVS) travel with velocities so high, that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US\,708. Travelling with a velocity of 1200kms1\sim1200\,{\rm km\,s^{-1}}, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVS. Furthermore, we discovered US\,708 to be a fast rotator. According to our binary evolution model it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.Comment: 16 pages report, 20 pages supplementary material

    A Sino-German 6 cm polarization survey of the Galactic plane II. The region from 129 degree to 230 degree longitude

    Full text link
    Linearly polarized Galactic synchrotron emission provides valuable information about the properties of the Galactic magnetic field and the interstellar magneto-ionic medium, when Faraday rotation along the line of sight is properly taken into account. We aim to survey the Galactic plane at 6 cm including linear polarization. At such a short wavelength Faraday rotation effects are in general small and the Galactic magnetic field properties can be probed to larger distances than at long wavelengths. The Urumqi 25-m telescope is used for a sensitive 6 cm survey in total and polarized intensities. WMAP K-band (22.8 GHz) polarization data are used to restore the absolute zero-level of the Urumqi U and Q maps by extrapolation. Total intensity and polarization maps are presented for a Galactic plane region of 129 degree < l < 230 degree and |b| < 5 degree in the anti-centre with an angular resolution of 9'5 and an average sensitivity of 0.6 mK and 0.4 mK Tb in total and polarized intensity, respectively. We briefly discuss the properties of some extended Faraday Screens detected in the 6 cm polarization maps. The Sino-German 6 cm polarization survey provides new information about the properties of the magnetic ISM. The survey also adds valuable information for discrete Galactic objects and is in particular suited to detect extended Faraday Screens with large rotation measures hosting strong regular magnetic fields.Comment: 17 pages, 20 figures, accepted by A&amp;A. Resolutions of the figures have been significantly reduced. For version with full resolution, see http://159.226.88.6/zmtt/6cm/papers/gao.paper2.pd

    Therapeutic suggestion helps to cut back on drug intake for mechanically ventilated patients in intensive care unit

    Get PDF
    Research was conducted on ventilated patients treated in an intensive care unit (ICU) under identical circumstances; patients were divided into two groups (subsequently proved statistically identical as to age and Simplified Acute Physiology Score II [SAPS II]). One group was treated with positive suggestions for 15-20 min a day based on a predetermined scheme, but tailored to the individual patient, while the control group received no auxiliary psychological treatment. Our goal was to test the effects of positive communication in this special clinical situation. In this section of the research, the subsequent data collection was aimed to reveal whether any change in drug need could be demonstrated upon the influence of suggestions as compared to the control group. Owing to the strict recruitment criteria, a relatively small sample (suggestion group n = 15, control group n = 10) was available during the approximately nine-month period of research. As an outcome of suggestions, there was a significant drop in benzodiazepine (p < 0.005), opioid (p < 0.001), and the α2-agonist (p < 0.05) intake. All this justifies the presence of therapeutic suggestions among the therapies used in ICUs. However, repeating the trial on a larger sample of patients would be recommended. © 2013 Akadémiai Kiadó, Budapest

    Whispering gallery microresonators for second harmonic light generation from a low number of small molecules

    Get PDF
    Unmarked sensitive detection of molecules is needed in environmental pollution monitoring, disease diagnosis, security screening systems and in many other situations in which a substance must be identified. When molecules are attached or adsorbed onto an interface, detecting their presence is possible using second harmonic light generation, because at interfaces the inversion symmetry is broken. However, such light generation usually requires either dense matter or a large number of molecules combined with high-power laser sources. Here we show that using high-Q spherical microresonators and low average power, between 50 and 100 small non-fluorescent molecules deposited on the outer surface of the microresonator can generate a detectable change in the second harmonic light. This generation requires phase matching in the whispering gallery modes, which we achieved using a new procedure to periodically pattern, with nanometric precision, a molecular surface monolayer

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Free-Space distribution of entanglement and single photons over 144 km

    Get PDF
    Quantum Entanglement is the essence of quantum physics and inspires fundamental questions about the principles of nature. Moreover it is also the basis for emerging technologies of quantum information processing such as quantum cryptography, quantum teleportation and quantum computation. Bell's discovery, that correlations measured on entangled quantum systems are at variance with a local realistic picture led to a flurry of experiments confirming the quantum predictions. However, it is still experimentally undecided whether quantum entanglement can survive global distances, as predicted by quantum theory. Here we report the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality measured by two observers separated by 144 km between the Canary Islands of La Palma and Tenerife via an optical free-space link using the Optical Ground Station (OGS) of the European Space Agency (ESA). Furthermore we used the entangled pairs to generate a quantum cryptographic key under experimental conditions and constraints characteristic for a Space-to-ground experiment. The distance in our experiment exceeds all previous free-space experiments by more than one order of magnitude and exploits the limit for ground-based free-space communication; significantly longer distances can only be reached using air- or space-based platforms. The range achieved thereby demonstrates the feasibility of quantum communication in space, involving satellites or the International Space Station (ISS).Comment: 10 pages including 2 figures and 1 table, Corrected typo

    The C-Type Lectin of the Aggrecan G3 Domain Activates Complement

    Get PDF
    Excessive complement activation contributes to joint diseases such as rheumatoid arthritis and osteoarthritis during which cartilage proteins are fragmented and released into the synovial fluid. Some of these proteins and fragments activate complement, which may sustain inflammation. The G3 domain of large cartilage proteoglycan aggrecan interacts with other extracellular matrix proteins, fibulins and tenascins, via its C-type lectin domain (CLD) and has important functions in matrix organization. Fragments containing G3 domain are released during normal aggrecan turnover, but increasingly so in disease. We now show that the aggrecan CLD part of the G3 domain activates the classical and to a lesser extent the alternative pathway of complement, via binding of C1q and C3, respectively. The complement control protein (CCP) domain adjacent to the CLD showed no effect on complement initiation. The binding of C1q to G3 depended on ionic interactions and was decreased in D2267N mutant G3. However, the observed complement activation was attenuated due to binding of complement inhibitor factor H to CLD and CCP domains. This was most apparent at the level of deposition of terminal complement components. Taken together our observations indicate aggrecan CLD as one factor involved in the sustained inflammation of the joint
    corecore