3,236 research outputs found

    Constraints on SN Ia progenitor time delays from high-z SNe and the star formation history

    Full text link
    We re-assess the question of a systematic time delay between the formation of the progenitor and its explosion in a type Ia supernova (SN Ia) using the Hubble Higher-z Supernova Search sample (Strolger et al. 2004). While the previous analysis indicated a significant time delay, with a most likely value of 3.4 Gyr, effectively ruling out all previously proposed progenitor models, our analysis shows that the time-delay estimate is dominated by systematic errors, in particular due to uncertainties in the star-formation history. We find that none of the popular progenitor models under consideration can be ruled out with any significant degree of confidence. The inferred time delay is mainly determined by the peak in the assumed star-formation history. We show that, even with a much larger Supernova sample, the time delay distribution cannot be reliably reconstructed without better constraints on the star-formation history.Comment: accepted for publication in MNRA

    Spin fluctuations with two-dimensional XY behavior in a frustrated S = 1/2 square-lattice ferromagnet

    Get PDF
    The spin dynamics of the layered square-lattice vanadate Pb2VO(PO4)2 is investigated by electron spin resonance at various magnetic fields and at temperatures above magnetic ordering. The linewidth divergence towards low temperatures seems to agree with isotropic Heisenberg-type spin exchange suggesting that the spin relaxation in this quasi-two dimensional compound is governed by low-dimensional quantum fluctuations. However, a weak easy- plane anisotropy of the g factor points to the presence of a planar XY type of exchange. Indeed, we found that the linewidth divergence is described best by XY-like spin fluctuations which requires a single parameter only. Therefore, ESR-probed spin dynamics could establish Pb2VO(PO4)2 as the first frustrated square lattice system with XY-inherent spin topological fluctuations.Comment: 5 pages, 3 figure

    Current-voltage correlations in interferometers

    Full text link
    We investigate correlations of current at contacts and voltage fluctuations at voltage probes coupled to interferometers. The results are compared with correlations of current and occupation number fluctuations at dephasing probes. We use a quantum Langevin approach for the average quantities and their fluctuations. For higher order correlations we develop a stochastic path integral approach and find the generating functions of voltage or occupation number fluctuations. We also derive a generating function for the joint distribution of voltage or occupation number at the probe and current fluctuations at a terminal of a conductor. For energy independent scattering we found earlier that the generating function of current cumulants in interferometers with a one-channel dephasing or voltage probe are identical. Nevertheless, the distribution function for voltage and the distribution function for occupation number fluctuations differ, the latter being broader than that of former in all examples considered here.Comment: 23 pages, 10 figures, minor changes, additional appendix, added reference

    K+ and K- production in heavy-ion collisions at SIS-energies

    Full text link
    The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation function for Au+Au and for C+C reactions increases with decreasing beam energy, which is expected for a soft nuclear equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K- emission as a function of the size of the collision system, of the collision centrality, of the kaon energy, and of the polar emission angle has been performed. The K-/K+ ratio is found to be nearly constant as a function of the collision centrality. The spectral slopes and the polar emission patterns are different for K- and for K+. These observations indicate that K+ mesons decouple earlier from the reaction zone than K- mesons.Comment: invited talk given at the SQM2003 conference in Atlantic Beach, USA (March 2003), to be published in Journal of Physics G, 10pages, 7 figure

    Resonance energy transfer: The unified theory revisited

    Get PDF
    Resonanceenergy transfer (RET) is the principal mechanism for the intermolecular or intramolecular redistribution of electronic energy following molecular excitation. In terms of fundamental quantum interactions, the process is properly described in terms of a virtual photon transit between the pre-excited donor and a lower energy (usually ground-state) acceptor. The detailed quantum amplitude for RET is calculated by molecular quantum electrodynamical techniques with the observable, the transfer rate, derived via application of the Fermi golden rule. In the treatment reported here, recently devised state-sequence techniques and a novel calculational protocol is applied to RET and shown to circumvent problems associated with the usual method. The second-rank tensor describing virtual photon behavior evolves from a Green’s function solution to the Helmholtz equation, and special functions are employed to realize the coupling tensor. The method is used to derive a new result for energy transfer systems sensitive to both magnetic- and electric-dipole transitions. The ensuing result is compared to that of pure electric-dipole–electric-dipole coupling and is analyzed with regard to acceptable transfer separations. Systems are proposed where the electric-dipole–magnetic-dipole term is the leading contribution to the overall rate

    Characterisation of AMS H35 HV-CMOS monolithic active pixel sensor prototypes for HEP applications

    Full text link
    Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas to be covered and material budget are concerned. This is the case of the outermost pixel layers of the future ATLAS tracking detector for the HL-LHC. For experiments at hadron colliders, radiation hardness is a key requirement which is not fulfilled by standard CMOS sensor designs that collect charge by diffusion. This issue has been addressed by depleted active pixel sensors in which electronics are embedded into a large deep implantation ensuring uniform charge collection by drift. Very first small prototypes of hybrid depleted active pixel sensors have already shown a radiation hardness compatible with the ATLAS requirements. Nevertheless, to compete with the present hybrid solutions a further reduction in costs achievable by a fully monolithic design is desirable. The H35DEMO is a large electrode full reticle demonstrator chip produced in AMS 350 nm HV-CMOS technology by the collaboration of Karlsruher Institut f\"ur Technologie (KIT), Institut de F\'isica d'Altes Energies (IFAE), University of Liverpool and University of Geneva. It includes two large monolithic pixel matrices which can be operated standalone. One of these two matrices has been characterised at beam test before and after irradiation with protons and neutrons. Results demonstrated the feasibility of producing radiation hard large area fully monolithic pixel sensors in HV-CMOS technology. H35DEMO chips with a substrate resistivity of 200Ω\Omega cm irradiated with neutrons showed a radiation hardness up to a fluence of 101510^{15}neq_{eq}cm−2^{-2} with a hit efficiency of about 99% and a noise occupancy lower than 10−610^{-6} hits in a LHC bunch crossing of 25ns at 150V

    Electron Spin Resonance of the ferromagnetic Kondo lattice CeRuPO

    Full text link
    The spin dynamics of the ferromagnetic Kondo lattice CeRuPO is investigated by Electron Spin Resonance (ESR) at microwave frequencies of 1, 9.4, and 34~GHz. The measured resonance can be ascribed to a rarely observed bulk Ce3+ resonance in a metallic Ce compound and can be followed below the ferromagnetic transition temperature Tc=14 K. At T>Tc the interplay between the RKKY-exchange interaction and the crystal electric field anisotropy determines the ESR parameters. Near Tc the spin relaxation rate is influenced by the critical fluctuations of the order parameter.Comment: This is an article accepted for publication in Journal of Physics: Condensed Matte

    MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li

    Full text link
    We present MUSE integral field spectroscopic observations of the host galaxy (PGC 043234) of one of the closest (z=0.0206z=0.0206, D≃90D\simeq 90 Mpc) and best-studied tidal disruption events (TDE), ASASSN-14li. The MUSE integral field data reveal asymmetric and filamentary structures that extend up to ≳10\gtrsim 10 kpc from the post-starburst host galaxy of ASASSN-14li. The structures are traced only through the strong nebular [O III] λ\lambda5007, [N II] λ\lambda6584, and Hα\alpha emission lines. The total off nuclear [O III] λ\lambda5007 luminosity is luminosity is 4.7×10394.7\times 10^{39} erg s−1^{-1} and the ionized H mass is ∌104(500/ne) M⊙\rm \sim 10^4(500/n_e)\,M_{\odot}. Based on the BPT diagram, the nebular emission can be driven by either AGN photoionization or shock excitation, with AGN photoionization favored given the narrow intrinsic line widths. The emission line ratios and spatial distribution strongly resemble ionization nebulae around fading AGNs such as IC 2497 (Hanny's Voorwerp) and ionization "cones" around Seyfert 2 nuclei. The morphology of the emission line filaments strongly suggest that PGC 043234 is a recent merger, which likely triggered a strong starburst and AGN activity leading to the post-starburst spectral signatures and the extended nebular emission line features we see today. We briefly discuss the implications of these observations in the context of the strongly enhanced TDE rates observed in post-starburst galaxies and their connection to enhanced theoretical TDE rates produced by supermassive black-hole binaries.Comment: Accepted for publication in ApJ
    • 

    corecore