82 research outputs found

    Nonlinear electron-phonon coupling in doped manganites

    Full text link
    We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr0.5_{0.5}Ca0.5_{0.5}MnO3_3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control

    Pore network model of primary freeze drying

    Full text link
    [EN] he pore scale progression of the sublimation front during primary freeze drying depends on the local vapor transport and the local heat transfer as well. If the pore space is size distributed, vapor and heat transfer may spatially vary. Beyond that, the pore size distribution can substantially affect the physics of the transport mechanisms if they occur in a transitional regime. Exemplarily, if the critical mean free path is locally exceeded, the vapor transport regime passes from viscous flow to Knudsen diffusion. At the same time, the heat transfer is affected by the local ratio of pore space to the solid skeleton. The impact of the pore size distribution on the transitional vapor and heat transfer can be studied by pore scale models such as the pore network model. As a first approach, we present a pore network model with vapor transport in the transitional regime between Knudsen diffusion and viscous flow at constant temperature in the dry region. We demonstrate the impact of pore size distribution, temperature and pressure on the vapor transport regimes. Then we study on the example of a 2D square lattice, how the presence of micro and macro pores affects the macroscopic progression of the sublimation front.Vorhauer, N.; Först, P.; Schuchmann, H.; Tsotsas, E. (2018). Pore network model of primary freeze drying. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 221-228. https://doi.org/10.4995/IDS2018.2018.7284OCS22122

    Разработка программной системы визуализации многомерных данных на основе кривых Эндрюса

    Get PDF
    Методы представления многомерных данных с помощью кривых на плоскости, например, метод кривых Эндрюса, являются мощным инструментом визуализации многопараметрических данных. Они отлично подходят для первичного анализа, так как, благодаря их свойствам, визуализировав набор данных с их помощью, исследователь может понять, какова структура распределения этих данных, присутствуют ли в них кластеры, содержат ли они аномалии и так далее. В данной работе описана разработка программной системы визуализации данных, основанной на кривых Эндрюса.Methods of multidimensional data representation with curves on plane, for example Andrews curves, are a powerful tool of multivariate data visualization. These methods can be successfully applied at the stage of primary data analysis, as due to their properties they may help researcher understand what is the structure of a data distribution, does it split into any clusters, does it contain any outliers or anomalous data entries, and so on. This paper describes development of a data visualization software system, which uses Andrews curves method to represent data on plane

    An optically stimulated superconducting-like phase in K3C60 far above equilibrium Tc

    Get PDF
    The control of non-equilibrium phenomena in complex solids is an important research frontier, encompassing new effects like light induced superconductivity. Here, we show that coherent optical excitation of molecular vibrations in the organic conductor K3C60 can induce a non-equilibrium state with the optical properties of a superconductor. A transient gap in the real part of the optical conductivity and a low-frequency divergence of the imaginary part are measured for base temperatures far above equilibrium Tc=20 K. These findings underscore the role of coherent light fields in inducing emergent order.Comment: 40 pages, 23 figure

    Ultrafast strain engineering in complex oxide heterostructures

    Full text link
    We report on ultrafast optical experiments in which femtosecond mid-infrared radiation is used to excite the lattice of complex oxide heterostructures. By tuning the excitation energy to a vibrational mode of the substrate, a long-lived five-order-of-magnitude increase of the electrical conductivity of NdNiO3 epitaxial thin films is observed as a structural distortion propagates across the interface. Vibrational excitation, extended here to a wide class of heterostructures and interfaces, may be conducive to new strategies for electronic phase control at THz repetition rates

    The interface between silicon and a high-k oxide

    Full text link
    The ability to follow Moore's Law has been the basis of the tremendous success of the semiconductor industry in the past decades. To date, the greatest challenge for device scaling is the required replacement of silicon dioxide-based gate oxides by high-k oxides in transistors. Around 2010 high-k oxides are required to have an atomically defined interface with silicon without any interfacial SiO2 layer. The first clean interface between silicon and a high-K oxide has been demonstrated by McKee et al. Nevertheless, the interfacial structure is still under debate. Here we report on first-principles calculations of the formation of the interface between silicon and SrTiO3 and its atomic structure. Based on insights into how the chemical environment affects the interface, a way to engineer seemingly intangible electrical properties to meet technological requirements is outlined. The interface structure and its chemistry provide guidance for the selection process of other high-k gate oxides and for controlling their growth. Our study also shows that atomic control of the interfacial structure can dramatically improve the electronic properties of the interface. The interface presented here serves as a model for a variety of other interfaces between high-k oxides and silicon.Comment: 10 pages, 2 figures (one color

    Optical Stabilization of Fluctuating High Temperature Ferromagnetism in YTiO3_3

    Full text link
    In quantum materials, degeneracies and frustrated interactions can have a profound impact on the emergence of long-range order, often driving strong fluctuations that suppress functionally relevant electronic or magnetic phases. Engineering the atomic structure in the bulk or at heterointerfaces has been an important research strategy to lift these degeneracies, but these equilibrium methods are limited by thermodynamic, elastic, and chemical constraints. Here, we show that all-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize high-temperature ferromagnetism in YTiO3_3, a material that exhibits only partial orbital polarization, an unsaturated low-temperature magnetic moment, and a suppressed Curie temperature, TcT_c = 27 K. The enhancement is largest when exciting a 9 THz oxygen rotation mode, for which complete magnetic saturation is achieved at low temperatures and transient ferromagnetism is realized up to Tneq>T_{neq} > 80 K, nearly three times the thermodynamic transition temperature. First-principles and model calculations of the nonlinear phonon-orbital-spin coupling reveal that these effects originate from dynamical changes to the orbital polarization and the makeup of the lowest quasi-degenerate Ti t2gt_{2g} levels. Notably, light-induced high temperature ferromagnetism in YTiO3_3 is found to be metastable over many nanoseconds, underscoring the ability to dynamically engineer practically useful non-equilibrium functionalities.Comment: 14 pages, 4 figure

    Mode-Selective Control of the Crystal Lattice

    Full text link
    Driving phase changes by selective optical excitation of specific vibrational modes in molecular and condensed phase systems has long been a grand goal for laser science. However, phase control has to date primarily been achieved by using coherent light fields generated by femtosecond pulsed lasers at near-infrared or visible wavelengths. This field is now being advanced by progress in generating intense femtosecond pulses in the mid-infrared, which can be tuned into resonance with infrared-active crystal lattice modes of a solid. Selective vibrational excitation is particularly interesting in complex oxides with strong electronic correlations, where even subtle modulations of the crystallographic structure can lead to colossal changes of the electronic and magnetic properties. In this Account, we summarize recent efforts to control the collective phase state in solids through mode-selective lattice excitation. The key aspect of the underlying physics is the nonlinear coupling of the resonantly driven phonon to other (Raman-active) modes due to lattice anharmonicities, theoretically discussed as ionic Raman scattering in the 1970s. Such nonlinear phononic excitation leads to rectification of a directly excited infrared-active mode and to a net displacement of the crystal along the coordinate of all anharmonically coupled modes. We present the theoretical basis and the experimental demonstration of this phenomenon, using femtosecond optical spectroscopy and ultrafast X-ray diffraction at a free electron laser. The observed nonlinear lattice dynamics is shown to drive electronic and magnetic phase transitions in many complex oxides, including insulator–metal transitions, charge/orbital order melting and magnetic switching in manganites. Furthermore, we show that the selective vibrational excitation can drive high-T<sub>C</sub> cuprates into a transient structure with enhanced superconductivity. The combination of nonlinear phononics with ultrafast crystallography at X-ray free electron lasers may provide new design rules for the development of materials that exhibit these exotic behaviors also at equilibrium

    Restoring interlayer Josephson coupling in La1.885Ba0.115CuO4 by charge transfer melting of stripe order

    Get PDF
    We show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La1.885Ba0.115CuO4. Time-resolved resonant soft x-ray diffraction demonstrates that charge order melting is prompt following near-infrared photoexcitation whereas the crystal structure remains intact for moderate fluences. THz time-domain spectroscopy reveals that, for the first 2 ps following photoexcitation, a new Josephson plasma resonance edge, at higher frequency with respect to the equilibrium edge, is induced indicating enhanced superconducting interlayer coupling. The fluence dependence of the charge-order melting and the enhanced superconducting interlayer coupling are correlated with a saturation limit of ∼0.5mJ/cm2. Using a combination of x-ray and optical spectroscopies we establish a hierarchy of timescales between enhanced superconductivity, melting of charge order, and rearrangement of the crystal structure
    corecore