259 research outputs found

    Ampsaga/Amsaga

    Get PDF
    Par Paul-Albert Février Deux fleuves marquaient la limite de la province de Maurétanie césarienne : la Mulucha à l’ouest, l’Amsaga à l’est. Particularité que l’on ne retrouve pas entre la Numidie et l’Afrique. Or, l’un des cours d’eau, l’Amsaga, est connu à la fois par des sources littéraires et par des textes épigraphiques. S. Gsell, Atlas archéologique de l’Algérie, Paris, Alger, 1911, feuille 8, n° 5, donne la liste des textes anciens relatifs au fleuve. La plus ancienne mention d’une limi..

    Abizar

    Get PDF
    Par P.-A. Février Localité située sur le versant méridional du massif montagneux côtier de Grande Kabylie, à quelques kilomètres, à vol d’oiseau, au Sud-Est de Tigzirt, où fut découverte, en 1859 une stèle de grand intérêt. Haute de 1,25m et large vers le sommet de 1,10m, elle se présente sous la forme d’une dalle de grès aux contours assez irréguliers, en particulier à droite. Un homme y est représenté à cheval et armé. L’homme dont le visage et le torse sont en position frontale est placé a..

    The Hydraulics of Roman Aqueducts: What do we know? Why should we learn ?

    Get PDF
    The Roman engineers were at the forefront of science and their engineering heritage included some magnificent aqueducts, many of which are still standing. While some scholars suggested that Roman engineers did not know the basic principle of conservation of mass, the Roman aqueducts provide a clear demonstration of the high level of hydraulic engineering expertise. The successful design and operation of these outstanding systems were massive achievements by modern standards. The development of regulation basins, culverts and energy dissipators was far from obvious. It is the writer's opinion that the leading Roman hydraulic engineers involved with the major aqueducts in Gaul and North-Africa understood the concepts of continuity and momentum

    First principles fluid modelling of magnetic island stabilization by ECCD

    Get PDF
    International audienceTearing modes are MHD instabilities that reduce the performances of fusion devices. They can however be controlled and suppressed using Electron Cyclotron Current Drive (ECCD) as demonstrated in various tokamaks. In this work, simulations of islands stabilization by ECCD-driven current have been carried out using the toroidal nonlinear 3D full MHD code XTOR-2F, in which a current-source term modeling the ECCD has been implemented. The efficiency parameter is computed and its variations with respect to source width and location are computed. The influence of parameters such as current intensity, source width and position with respect to the island is evaluated and compared to the Modified Rutherford Equation. We retrieve a good agreement between the simulations and the analytical predictions concerning the variations of control efficiency with source width and position. We also show that the 3D nature of the current source term can lead to the onset of an island if the source term is precisely applied on a rational surface. We report the observation of a flip phenomenon in which the O-and X-Points of the island rapidly switch their position in order for the island to take advantage of the current drive to grow

    Performance assessment of a tightly baffled, long-legged divertor configuration in TCV with SOLPS-ITER

    Full text link
    Numerical simulations explore the possibility to test the tightly baffled, long-legged divertor (TBLLD) concept in a future upgrade of the Tokamak \`a configuration variable (TCV). The SOLPS-ITER code package is used to compare the exhaust performance of several TBLLD configurations with existing unbaffled and baffled TCV configurations. The TBLLDs feature a range of radial gaps between the separatrix and the outer leg side walls. All considered TBLLDs are predicted to lead to a denser and colder plasma in front of the targets and improve the power handling by factors of 2-3 compared to the present, baffled divertor and by up to a factor of 12 compared to the original, unbaffled configuration. The improved TBLLD performance is mainly due to a better neutral confinement with improved plasma-neutral interactions in the divertor region. Both power handling capability and neutral confinement increases when reducing the radial gap. The core compatibility of TBLLDs with nitrogen seeding is also evaluated and the detachment window with acceptable core pollution for the proposed TBLLDs is explored, showing a reduction of required upstream impurity concentration up to 18% to achieve the detachment with thinner radial gap

    Strongly coupled fluid-particle flows in vertical channels. II. Turbulence modeling

    Get PDF
    In Part I, simulations of strongly coupled fluid-particle flow in a vertical channel were performed with the purpose of understanding, in general, the fundamental physics of wall-bounded multiphase turbulence and, in particular, the roles of the spatially correlated and uncorrelated components of the particle velocity.The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions were presented, and the unclosed terms that are retained in the context of fully developed channel flow were evaluated in an Eulerian–Lagrangian (EL) framework. Here, data from the EL simulations are used to validate a multiphase Reynolds-stress model (RSM) that predicts the wall-normal distribution of the two-phase, one-point turbulence statistics up to second order. It is shown that the anisotropy of the Reynolds stresses both near the wall and far away is a crucial component for predicting the distribution of the RA particle-phase volume fraction. Moreover, the decomposition of the phase-average (PA) particle-phase fluctuating energy into the spatially correlated and uncorrelated components is necessary to account for the boundary conditions at the wall. When these factors are properly accounted for in the RSM, the agreement with the EL turbulence statistics is satisfactory at first order (e.g., PA velocities) but less so at second order (e.g., PA turbulent kinetic energy). Finally, an algebraic stress model for the PA particle-phase pressure tensor and the Reynolds stresses is derived from the RSM using the weak-equilibrium assumption

    Geometrical frustration effects on charge-driven quantum phase transitions

    Full text link
    The interplay of Coulomb repulsion and geometrical frustration on charge-driven quantum phase transitions is explored. The ground state phase diagram of an extended Hubbard model on an anisotropic triangular lattice relevant to quarter-filled layered organic materials contains homogeneous metal, 'pinball' and three-fold charge ordered metallic phases. The stability of the 'pinball' phase occurring for strong Coulomb repulsions is found to be strongly influenced by geometrical frustration. A comparison with a spinless model reproduces the transition from the homogeneous metallic phase to a pinball liquid, which indicates that the spin correlations should play a much smaller role than the charge correlations in the metallic phase close to the charge ordering transition. Spin degeneracy is, however, essential to describe the dependence of the system on geometrical frustration. Based on finite temperature Lanczos diagonalization we find that the effective Fermi temperature scale, T*, of the homogeneous metal vanishes at the quantum phase transition to the ordered metallic phase driven by the Coulomb repulsion. Above this temperature scale 'bad' metallic behavior is found which is robust against geometrical frustration in general. Quantum critical phenomena are not found whenever nesting of the Fermi surface is strong, possibly indicating a first order transition instead. 'Reentrant' behavior in the phase diagram is encountered whenever the 2kF-CDW instability competes with the Coulomb driven three-fold charge order transition. The relevance of our results to the family of quarter-filled materials: theta-(BEDT-TTF)2X is discussed.Comment: 15 pages, 11 figure

    Synergetic effects of collisions, turbulence and sawtooth crashes on impurity transport

    Get PDF
    This paper investigates the interplay of neoclassical, turbulent and MHD processes, which are simultaneously at play when contributing to impurity transport. It is shown that these contributions are not additive, as assumed sometimes. The interaction between turbulence and neoclassical effects leads to less effective thermal screening, i.e. lowers the outward flux due to temperature gradient. This behavior is attributed to poloidal asymmetries of the flow driven by turbulence. Moreover sawtooth crashes play an important role to determine fluxes across the q = 1 surface. It is found that the density profile of a heavy impurity differs significantly in sawtoothing plasmas from the one predicted by neoclassical theory when neglecting MHD events. Sawtooth crashes impede impurity accumulation, but also weaken the impurity outflux due to the temperature gradient when the latter is dominant
    • …
    corecore