59 research outputs found

    Creation of a functional S-nitrosylation site in vitro by single point mutation

    Get PDF
    Here we show that in extrahepatic methionine adenosyltransferase replacement of a single amino acid (glycine 120) by cysteine is sufficient to create a functional nitric oxide binding site without affecting the kinetic properties of the enzyme. When wild-type and mutant methionine adenosyltransferase were incubated with S-nitrosoglutathione the activity of the wild-type remained unchanged whereas the activity of the mutant enzyme decreased markedly. The mutant enzyme was found to be S-nitrosylated upon incubation with the nitric oxide donor. Treatment of the S-nitrosylated mutant enzyme with glutathione removed most of the S-nitrosothiol groups and restored the activity to control values. In conclusion, our results suggest that functional S-nitrosylation sites can develop from existing structures without drastic or large-scale amino acid replacement

    Superficial Characteristics and Functionalization Effectiveness of Non-Toxic Glutathione-Capped Magnetic, Fluorescent, Metallic and Hybrid Nanoparticles for Biomedical Applications

    Get PDF
    An optimal design of nanoparticles suitable for biomedical applications requires proper functionalization, a key step in the synthesis of such nanoparticles, not only for subsequent crosslinking to biological targets and to avoid cytotoxicity, but also to endow these materials with colloidal stability. In this sense, a reliable characterization of the effectiveness of the functionalization process would, therefore, be crucial for subsequent bioconjugations. In this work, we have analyzed glutathione as a means to functionalize four of the most widely used nanoparticles in biomedicine, one of which is a hybrid gold-magnetic-iron-oxide nanoparticle synthetized by a simple and novel method that we propose in this article. We have analyzed the colloidal characteristics that the glutathione capping provides to the different nanoparticles and, using information on the Z-potential, we have deduced the chemical group used by glutathione to link to the nanoparticle core. We have used electron microscopy for further structural and chemical characterization of the nanoparticles. Finally, we have evaluated nanoparticle cytotoxicity, studying cell viability after incubation with different concentrations of nanoparticles, showing their suitability for biomedical applications

    Density and magnetic susceptibility relationships in non-magnetic granites; a “wildcard” for modeling potential fields geophysical data

    Get PDF
    EGU2020: Sharing Geoscience Online, 4-8 May 2020Geophysical surveying (both gravity and magnetic) is of great help in 3D modeling of granitic bodies at depth. As in any potential-field geophysics study, petrophysical data (density [r], magnetic susceptibility [k] and remanence) are of key importance to reduce the uncertainty during the modeling of rock volumes. Several works have already demonstrated that ¿18O or [SiO2] display a negative correlation to density and to magnetic susceptibility. These relationships are particularly stable (and linear) in the so-called ¿non-magnetic¿ granites (susceptibilities falling within the paramagnetic range; between 0 and 500 10-6 S.I.) and usually coincident with calc-alcaline (CA) compositions (very common in Variscan domains). In this work we establish robust correlations between density and magnetic susceptibility at different scales in CA granites from the Pyrenees. Other plutons from Iberia were also considered (Veiga, Monesterio). The main goal is to use the available and densely sampled nets of anisotropy of magnetic susceptibility (AMS) data, performed during the 90¿s and early 2000¿s, together with new data acquired in the last few years, as an indirect measurement of density in order to carry out the 3D modelling of the gravimetric signal. We sampled some sections covering the main range of variability of magnetic susceptibility in the Mont Louis-Andorra, Maladeta and Marimanha granite bodies (Pyrenees), all three characterized by even and dense nets of AMS sites (more than 550 sites and 2500 AMS measurements). We performed new density and susceptibility measurements along two main cross-sections (Maladeta and Mont Louis-Andorra). In these outcrops, numerous measurements (usually more than 50) were taken in the field with portable susceptometers (SM20 and KT20 devices). Density data were derived from the Arquimedes principle applied on large hand samples cut in regular cubes weighting between 0.3 and 0.6 kg (whenever possible). These samples were subsampled and measured later on with a KLY-3 susceptibility bridge in the laboratory. Additionally, some density data were derived from the geometry and weighting of AMS samples. After the calibration of portable and laboratory susceptometers, density and magnetic susceptibility were plotted together. Regressions were derived for every granite body and they usually followed a linear function similar to: r = 2600 kg/m3 + (0.5 * k [10-6 S.I.]). As previously stated, this relationship is only valid in CA and paramagnetic granites, where iron is mostly fractioned in iron-bearing phyllosilicates and the occurrence of magnetite is negligible (or at least its contribution to the bulk susceptibility). These relationships allow transforming magnetic susceptibility data into density data helping in the 3D modelling of the gravimetric signal when density data from rock samples are scarce. Given the large amount of AMS studies worldwide, together with the quickness and cost-effectiveness of susceptibility measurements with portable devices, this methodology allows densifying and homogenizing the petrophysical data when modelling granite rock volumes based on both magnetic and gravimetric signal

    The role of retinal fluid location in atrophy and fibrosis evolution of patients with neovascular age-related macular degeneration long-term treated in real world

    Get PDF
    Purpose: To assess the effect of clinical factors on the development and progression of atrophy and fibrosis in patients with neovascular age-related macular degeneration (nAMD) receiving long-term treatment in the real world. Methods: An ambispective 36-month multicentre study, involving 359 nAMD patients from 17 Spanish hospitals treated according to the Spanish Vitreoretinal Society guidelines, was designed. The influence of demographic and clinical factors, including the presence and location of retinal fluid, on best-corrected visual acuity (BCVA) and progression to atrophy and/or fibrosis were analysed. Results: After 36 months of follow-up and an average of 13.8 anti-VEGF intravitreal injections, the average BCVA gain was +1.5 letters, and atrophy and/or fibrosis were present in 54.8% of nAMD patients (OR = 8.54, 95% CI = 5.85-12.47, compared to baseline). Atrophy was associated with basal intraretinal fluid (IRF) (OR = 1.87, 95% CI = 1.09-3.20), whereas basal subretinal fluid (SRF) was associated with a lower rate of atrophy (OR = 0.40, 95% CI = 0.23-0.71) and its progression (OR = 0.44, 95% CI = 0.26-0.75), leading to a slow progression rate (OR = 0.34, 95% CI = 0.14-0.83). Fibrosis development and progression were related to IRF at any visit (p < 0.001). In contrast, 36-month SRF was related to a lower rate of fibrosis (OR = 0.49, 95% CI = 0.29-0.81) and its progression (OR = 0.50, 95% CI = 0.31-0.81). Conclusion: Atrophy and/or fibrosis were present in 1 of 2 nAMD patients treated for 3 years. Both, especially fibrosis, lead to vision loss. Subretinal fluid (SRF) was associated with good visual outcomes and lower rates of atrophy and fibrosis, whereas IRF yields worse visual results and a higher risk of atrophy and especially fibrosis in routine clinical practice

    Lambda polarization from unpolarized quark fragmentation

    Get PDF
    The longstanding problem of explaining the observed polarization of Lambda hyperons inclusively produced in the high energy collisions of unpolarized hadrons is tackled by considering spin and k_T dependent quark fragmentation functions. The data on Lambda's and Lambda-bar's produced in p-N processes are used to determine simple phenomenological expressions for these new "polarizing fragmentation functions", which describe the experiments remarkably well.Comment: LaTeX, 21+1 pages, 6 eps figures, uses epsfig.st

    The burden of unintentional drowning: Global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study

    Get PDF
    __Background:__ Drowning is a leading cause of injury-related mortality globally. Unintentional drowning (International Classification of Diseases (ICD) 10 codes W65-74 and ICD9 E910) is one of the 30 mutually exclusive and collectively exhaustive causes of injury-related mortality in the Global Burden of Disease (GBD) study. This study's objective is to describe unintentional drowning using GBD estimates from 1990 to 2017. __Methods:__ Unintentional drowning from GBD 2017 was estimated for cause-specific mortality and years of life lost (YLLs), age, sex, country, region, Socio-demographic Index (SDI) quintile, and trends from 1990 to 2017. GBD 2017 used standard GBD methods for estimating mortality from drowning. __Results:__ Globally, unintentional drowning mortality decreased by 44.5% between 1990 and 2017, from 531 956 (uncertainty interval (UI): 484 107 to 572 854) to 295 210 (284 493 to 306 187) deaths. Global age-standardised mortality rates decreased 57.4%, from 9.3 (8.5 to 10.0) in 1990 to 4.0 (3.8 to 4.1) per 100 000 per annum in 2017. Unintentional drowning-associated mortality was generally higher in children, males and in low-SDI to middle-SDI countries. China, India, Pakistan and Bangladesh accounted for 51.2% of all drowning deaths in 2017. Oceania was the region with the highest rate of age-standardised YLLs in 2017, with 45 434 (40 850 to 50 539) YLLs per 100 000 across both sexes. __Conclusions:__ There has been a decline in global drowning rates. This study shows that the decline was not consistent across countries. The results reinforce the need for continued and improved policy, prevention and research efforts, with a focus on low-and middle-income countries

    Generation of the Brucella melitensis ORFeome version 1.1.

    Get PDF
    The bacteria of the Brucella genus are responsible for a worldwide zoonosis called brucellosis. They belong to the alpha-proteobacteria group, as many other bacteria that live in close association with a eukaryotic host. Importantly, the Brucellae are mainly intracellular pathogens, and the molecular mechanisms of their virulence are still poorly understood. Using the complete genome sequence of Brucella melitensis, we generated a database of protein-coding open reading frames (ORFs) and constructed an ORFeome library of 3091 Gateway Entry clones, each containing a defined ORF. This first version of the Brucella ORFeome (v1.1) provides the coding sequences in a user-friendly format amenable to high-throughput functional genomic and proteomic experiments, as the ORFs are conveniently transferable from the Entry clones to various Expression vectors by recombinational cloning. The cloning of the Brucella ORFeome v1.1 should help to provide a better understanding of the molecular mechanisms of virulence, including the identification of bacterial protein-protein interactions, but also interactions between bacterial effectors and their host's targets

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    corecore