16 research outputs found

    Contribución del sistema nervioso simpático en la génesis y manteniniento de las alteraciones hemodinámicas de la hipertensión portal

    Get PDF
    Estudios previos de nuestro grupo demostraron que la hipertensión portal causa una importante inhibición de RNA mensajeros y proteínas implicadas en neurotransmisión adrenérgica, acompañada de una marcada atrofia simpática de los nervios que rodean la vasculatura mesentérica. Esta atrofia simpática local podría estar contribuyendo a la vasodilatación arterial esplácnica de la hipertensión portal. La hipótesis que se estableció a partir de los resultados obtenidos asumía que durante la hipertensión portal, los cambios de presión detectados en la vasculatura esplácnica podrían promover una señal a través de la vía sensitiva aferente hasta los núcleos de regulación cardiovascular del tronco cerebral, donde se desencadenaría una respuesta eferente responsable de provocar la atrofia simpática. Los resultados de la primera parte del trabajo confirman esta hipótesis y apoyan el papel de la atrofia simpática en la vasodilatación arterial esplácnica de la hipertensión portal, demostrando que mediante el bloqueo de la señal aferente con la neurotoxina capsaicina, de ratas con ligadura de la vena porta (PVL), se consigue evitar la atrofia simpática y las alteraciones hemodinámicas simultáneamente. Además, en ratas PVL, en el ganglio mesentérico superior (SMG) que contiene los somas de las neuronas adrenérgicas que inervan el mesenterio, se demostró un aumento en la expresión de neuromoduladores tales como el factor de crecimiento neuronal NGF y su precusor proNGF y la molécula quimiorepelente Semaforina 3A (Sema3A). Sema3A se localizó en el espacio interneuronal, alrededor de las neuronas adrenérgicas colocalizando con fibras positivas a VAChT. Este aumento en la expresión de moduladores neuronales también se evitó en ratas PVL tratadas con capsaicina. En la segunda parte del trabajo, con el objetivo de confirmar la vía neuronal en la hipertensión portal, se estudiaron dos estructuras intermediarias: el ganglio nodoso donde se confirmó un aumento de la señal aferente sensitiva, vía el nervio vago en animales con hipertensión portal y las neuronas simpáticas colinérgicas preganglionares del núcleo intermediolateral de la médula espinal donde se observó presencia de Sema3A, sugiriendo el origen del aumento de la expresión de Sema3A del SMG en las neuronas colinérgicas preganglionares. Por otro lado, se profundizó en el estudio de alteraciones en la expresión de neuromoduladores implicados en las vías de crecimiento/regresión axonal y supervivencia/muerte neuronal en el SMG de ratas PVL. La expresión de la forma activa del receptor de NGF, la tirosina quinasa A (TrkA), que conduce a la activación de las vías de supervivencia y crecimiento neuronal, se reveló disminuida en ratas PVL comparando con sham. Sin embargo, las vías de apoptosis y de retracción axonal se encontraron estimuladas en ratas PVL, exhibiendo una sobreexpresión significativa de Sema3A y de su receptor Neuropilina1, junto con un aumento en la expresión del receptor de proNGF, el receptor de neurotrofinas p75, la caspasa7 activa, la poli(ADP-ribosa) polimerasa inactiva y Rho kinasa. Finalmente, se probó la administración de un agonista de TrkA, la amida gambógica, en ratas PVL con el fin de estimular la vía de crecimiento y proliferación en detrimento de la vía apoptótica. Los resultados mostraron una mejora de las alteraciones hemodinámicas y de la atrofia simpática, a través de la activación de las vías de supervivencia y la inhibición de la cascada apoptótica y regresión axonal mediada por Rho kinasa. En conclusión, estos resultados indican que la alteración adrenérgica y la atrofia simpática en la vasculatura mesentérica durante la hipertensión portal tiene su origen en alteraciones de la neuromodulación que conducen a regresión simpática post-ganglionar y a apoptosis que contribuyen a la vasodilatación esplácnica.We have previously demonstrated that portal hypertension causes an important inhibition of messenger RNA and proteins implicated in adrenergic neurotransmission and a marked atrophy in the sympathetic nerves surrounding mesenteric vasculature. This sympathetic atrophy could be contributing to the splanchnic vasodilation of portal hypertension. Our hypothesis assumed that during portal hypertension, pressure changes detected in the splanchnic vascular área could promote a signal through the visceral afferent sensitive pathway to the cardiovascular regulatory nuclei of the brainstem, triggering from there an efferent response resulting in sympathetic atrophy. The present results confirm this hypothesis and support the role for sympathetic atrophy in splanchnic arterial vasodilation of portal hypertension, showing that by blocking the sensitive afferent signal with capsaicin, the splanchnic sympathetic atrophy can be prevented in those animals where, simultaneously, the hemodynamic alterations were normalized. Indeed, in the superior mesenteric ganglia (SMG) of PVL, which contains the somas of adrenergic neurons that innervate the mesenteric vasculature, an increase in neuronal modulators such as nerve growth factor (NGF), its precursor proNGF and the chimiorepelent Semaphorine 3A (Sema3A) molecule was demonstrated. Sema3A localized in the interneuronal space surrounding adrenergic neurons and colocalizing with VAChT positive fibers. This increment in neuronal modulators was also avoided in capsaicin treated PVL. In the second part of the study, the neural pathway of portal hypertension was confirmed through the analysis of two intermediate structures. An increase in neuronal afferent activity was demonstrated in the vagal nodose ganglia of PVL rats and presence of Sema3A in the cholinergic sympathetic preganglionic neurons of the intermediolateral nucleus of the spinal cord suggested that it was the origin of the increased expression of Sema3A in the SMG. We also investigated alterations on neuromodulators and signaling pathways that, in the SMG of PVL rats, lead to axonal regression or apoptosis. We found that the active form of tyrosine kinase receptor A (TrkA), leading to proliferation and survival signaling was decreased in PVL compared to sham rats. In contrast, the apoptotic and axonal retraction pathways were stimulated in PVL, demonstrated by a significant overexpression in Sema3A and its receptor Neuropilin1, together with an increase in the neurotrophic receptor p75, the active caspase7 and the inactive poly(ADP-ribose) polymerase kinase expression. Finally, we tested the administration of a TrkA agonist, gambogic amide, in PVL rats. Our results showed an amelioration of hemodynamic alterations and sympathetic atrophy, through the activation of survival pathways and the inhibition of the apoptotic cascade and axonal regression mediated by Rho kinase. In conclusion, these results suggest that the adrenergic alterations and sympathetic atrophy observed in mesenteric vessels during portal hypertension is caused by alterations on neuromodulation leading to postganglionic sympathetic regression and apoptosis contributing to splanchnic vasodilation

    Contribución del sistema nervioso simpático en la génesis y manteniniento de las alteraciones hemodinámicas de la hipertensión portal

    Get PDF
    Estudios previos de nuestro grupo demostraron que la hipertensión portal causa una importante inhibición de RNA mensajeros y proteínas implicadas en neurotransmisión adrenérgica, acompañada de una marcada atrofia simpática de los nervios que rodean la vasculatura mesentérica. Esta atrofia simpática local podría estar contribuyendo a la vasodilatación arterial esplácnica de la hipertensión portal. La hipótesis que se estableció a partir de los resultados obtenidos asumía que durante la hipertensión portal, los cambios de presión detectados en la vasculatura esplácnica podrían promover una señal a través de la vía sensitiva aferente hasta los núcleos de regulación cardiovascular del tronco cerebral, donde se desencadenaría una respuesta eferente responsable de provocar la atrofia simpática. Los resultados de la primera parte del trabajo confirman esta hipótesis y apoyan el papel de la atrofia simpática en la vasodilatación arterial esplácnica de la hipertensión portal, demostrando que mediante el bloqueo de la señal aferente con la neurotoxina capsaicina, de ratas con ligadura de la vena porta (PVL), se consigue evitar la atrofia simpática y las alteraciones hemodinámicas simultáneamente. Además, en ratas PVL, en el ganglio mesentérico superior (SMG) que contiene los somas de las neuronas adrenérgicas que inervan el mesenterio, se demostró un aumento en la expresión de neuromoduladores tales como el factor de crecimiento neuronal NGF y su precusor proNGF y la molécula quimiorepelente Semaforina 3A (Sema3A). Sema3A se localizó en el espacio interneuronal, alrededor de las neuronas adrenérgicas colocalizando con fibras positivas a VAChT. Este aumento en la expresión de moduladores neuronales también se evitó en ratas PVL tratadas con capsaicina. En la segunda parte del trabajo, con el objetivo de confirmar la vía neuronal en la hipertensión portal, se estudiaron dos estructuras intermediarias: el ganglio nodoso donde se confirmó un aumento de la señal aferente sensitiva, vía el nervio vago en animales con hipertensión portal y las neuronas simpáticas colinérgicas preganglionares del núcleo intermediolateral de la médula espinal donde se observó presencia de Sema3A, sugiriendo el origen del aumento de la expresión de Sema3A del SMG en las neuronas colinérgicas preganglionares. Por otro lado, se profundizó en el estudio de alteraciones en la expresión de neuromoduladores implicados en las vías de crecimiento/regresión axonal y supervivencia/muerte neuronal en el SMG de ratas PVL. La expresión de la forma activa del receptor de NGF, la tirosina quinasa A (TrkA), que conduce a la activación de las vías de supervivencia y crecimiento neuronal, se reveló disminuida en ratas PVL comparando con sham. Sin embargo, las vías de apoptosis y de retracción axonal se encontraron estimuladas en ratas PVL, exhibiendo una sobreexpresión significativa de Sema3A y de su receptor Neuropilina1, junto con un aumento en la expresión del receptor de proNGF, el receptor de neurotrofinas p75, la caspasa7 activa, la poli(ADP-ribosa) polimerasa inactiva y Rho kinasa. Finalmente, se probó la administración de un agonista de TrkA, la amida gambógica, en ratas PVL con el fin de estimular la vía de crecimiento y proliferación en detrimento de la vía apoptótica. Los resultados mostraron una mejora de las alteraciones hemodinámicas y de la atrofia simpática, a través de la activación de las vías de supervivencia y la inhibición de la cascada apoptótica y regresión axonal mediada por Rho kinasa. En conclusión, estos resultados indican que la alteración adrenérgica y la atrofia simpática en la vasculatura mesentérica durante la hipertensión portal tiene su origen en alteraciones de la neuromodulación que conducen a regresión simpática post-ganglionar y a apoptosis que contribuyen a la vasodilatación esplácnica.We have previously demonstrated that portal hypertension causes an important inhibition of messenger RNA and proteins implicated in adrenergic neurotransmission and a marked atrophy in the sympathetic nerves surrounding mesenteric vasculature. This sympathetic atrophy could be contributing to the splanchnic vasodilation of portal hypertension. Our hypothesis assumed that during portal hypertension, pressure changes detected in the splanchnic vascular área could promote a signal through the visceral afferent sensitive pathway to the cardiovascular regulatory nuclei of the brainstem, triggering from there an efferent response resulting in sympathetic atrophy. The present results confirm this hypothesis and support the role for sympathetic atrophy in splanchnic arterial vasodilation of portal hypertension, showing that by blocking the sensitive afferent signal with capsaicin, the splanchnic sympathetic atrophy can be prevented in those animals where, simultaneously, the hemodynamic alterations were normalized. Indeed, in the superior mesenteric ganglia (SMG) of PVL, which contains the somas of adrenergic neurons that innervate the mesenteric vasculature, an increase in neuronal modulators such as nerve growth factor (NGF), its precursor proNGF and the chimiorepelent Semaphorine 3A (Sema3A) molecule was demonstrated. Sema3A localized in the interneuronal space surrounding adrenergic neurons and colocalizing with VAChT positive fibers. This increment in neuronal modulators was also avoided in capsaicin treated PVL. In the second part of the study, the neural pathway of portal hypertension was confirmed through the analysis of two intermediate structures. An increase in neuronal afferent activity was demonstrated in the vagal nodose ganglia of PVL rats and presence of Sema3A in the cholinergic sympathetic preganglionic neurons of the intermediolateral nucleus of the spinal cord suggested that it was the origin of the increased expression of Sema3A in the SMG. We also investigated alterations on neuromodulators and signaling pathways that, in the SMG of PVL rats, lead to axonal regression or apoptosis. We found that the active form of tyrosine kinase receptor A (TrkA), leading to proliferation and survival signaling was decreased in PVL compared to sham rats. In contrast, the apoptotic and axonal retraction pathways were stimulated in PVL, demonstrated by a significant overexpression in Sema3A and its receptor Neuropilin1, together with an increase in the neurotrophic receptor p75, the active caspase7 and the inactive poly(ADP-ribose) polymerase kinase expression. Finally, we tested the administration of a TrkA agonist, gambogic amide, in PVL rats. Our results showed an amelioration of hemodynamic alterations and sympathetic atrophy, through the activation of survival pathways and the inhibition of the apoptotic cascade and axonal regression mediated by Rho kinase. In conclusion, these results suggest that the adrenergic alterations and sympathetic atrophy observed in mesenteric vessels during portal hypertension is caused by alterations on neuromodulation leading to postganglionic sympathetic regression and apoptosis contributing to splanchnic vasodilation

    Inhibition of Neuronal Apoptosis and Axonal Regression Ameliorates Sympathetic Atrophy and Hemodynamic Alterations in Portal Hypertensive Rats

    No full text
    A neuronal pathway participates in the development of portal hypertension: blockade of afferent sensory nerves in portal vein ligated (PVL) rats simultaneously prevents brain cardiovascular regularory nuclei activation, neuromodulator overexpression in superior mesenteric ganglia, sympathetic atrophy of mesenteric innervation and hemodynamic alterations. Here we investigated in PVL rats alterations in neuromodulators and signaling pathways leading to axonal regression or apoptosis in the superior mesenteric ganglia and tested the effects of the stimulation of neuronal proliferation/survival by using a tyrosine kinase receptor A agonist, gambogic amide. The neuronal pathway was confirmed by an increased neuronal afferent activity at the vagal nodose ganglia and the presence of semaphorin3A in sympathetic pre-ganglionic neurons at the intermediolateral nucleus of the spinal cord of PVL rats. Expression of the active form of tyrosine kinase receptor A (phosphorylated), leading to proliferation and survival signaling, showed a significant reduction in PVL comparing to sham rats. In contrast, the apoptotic and axonal retraction pathways were stimulated in PVL, demonstrated by a significant overexpression of semaphorin 3A and its receptor neuropilin1, together with increases of cleaved caspase7, inactive poly(ADP-ribose) polymerase and Rho kinase expression. Finally, the administration of gambogic amide in PVL rats showed an amelioration of hemodynamic alterations and sympathetic atrophy, through the activation of survival pathways together with the inhibition of apoptotic cascades and Rho kinase mediated axonal regression. The adrenergic alteration and sympathetic atrophy in mesenteric vessels during portal hypertension is caused by alterations on neuromodulation leading to post-ganglionic sympathetic regression and apoptosis and contributing to splanchnic vasodilation

    Inhibition of Neuronal Apoptosis and Axonal Regression Ameliorates Sympathetic Atrophy and Hemodynamic Alterations in Portal Hypertensive Rats

    Get PDF
    <div><p>Background and Aim</p><p>A neuronal pathway participates in the development of portal hypertension: blockade of afferent sensory nerves in portal vein ligated (PVL) rats simultaneously prevents brain cardiovascular regularory nuclei activation, neuromodulator overexpression in superior mesenteric ganglia, sympathetic atrophy of mesenteric innervation and hemodynamic alterations. Here we investigated in PVL rats alterations in neuromodulators and signaling pathways leading to axonal regression or apoptosis in the superior mesenteric ganglia and tested the effects of the stimulation of neuronal proliferation/survival by using a tyrosine kinase receptor A agonist, gambogic amide.</p><p>Results</p><p>The neuronal pathway was confirmed by an increased neuronal afferent activity at the vagal nodose ganglia and the presence of semaphorin3A in sympathetic pre-ganglionic neurons at the intermediolateral nucleus of the spinal cord of PVL rats. Expression of the active form of tyrosine kinase receptor A (phosphorylated), leading to proliferation and survival signaling, showed a significant reduction in PVL comparing to sham rats. In contrast, the apoptotic and axonal retraction pathways were stimulated in PVL, demonstrated by a significant overexpression of semaphorin 3A and its receptor neuropilin1, together with increases of cleaved caspase7, inactive poly(ADP-ribose) polymerase and Rho kinase expression. Finally, the administration of gambogic amide in PVL rats showed an amelioration of hemodynamic alterations and sympathetic atrophy, through the activation of survival pathways together with the inhibition of apoptotic cascades and Rho kinase mediated axonal regression.</p><p>Conclusion</p><p>The adrenergic alteration and sympathetic atrophy in mesenteric vessels during portal hypertension is caused by alterations on neuromodulation leading to post-ganglionic sympathetic regression and apoptosis and contributing to splanchnic vasodilation.</p></div

    Interplaying signaling pathways responsible for the modulation of axonal survival and death.

    No full text
    <p>NGF, nerve growth factor; proNGF, NGF precursor; TrkA, tyrosine kinase receptor A, p75NTR, neurotrophin receptor p75; Sema3A, semaphorin 3A; JNK, c-Jun N-terminal kinase; RhoA, Ras homolog family member A; ROCK, Rho kinase; MAPK/ERK, mitogen activated protein kinase; AKT, protein kinase B; nNOS, neuronal nitric oxide synthase; NO, nitric oxide; Casp-7, cleaved caspase 7; PARP, poly(ADP-ribose) polymerase.</p

    Analysis of sympathetic atrophy in the superior mesenteric artery (SMA) after gambogic amide administration.

    No full text
    <p>(A) Representative images of tyrosine hydroxylase (Th) immunostaining at 40× showing transversal sections of complete arterial wall (AW) surrounded by nervous structures from sham (showed as a normal state reference), PVL vehicle (PVL-V) (n = 6), PVL gambogic amide (PVL-GA) (n = 6), *p<0.05, **p<0.001, compared to PVL-V. (B) Bar diagrams showing immunohistochemical quantitation of total nervous area and Th staining area in nerves surrounding the SMA from experimental groups PVL-V and PVL-GA.</p

    Protein expression in the superior mesenteric ganglion after gambogic amide administration.

    No full text
    <p>Bar diagrams showing quantitation by Western blot analysis of (A) tyrosine kinase receptor A (TrkA), phospho-TrkA (pTrkA), (B) the ratio of phosphorylated and total forms of mitogen activated protein kinase (MAPK) and protein kinase B (AKT) and neuronal nitric oxide synthase (nNOS), (C) Rho kinase (ROCK), cleaved caspase 7 (Casp-7) and poly(ADP-ribose)polymerase (PARP) in PVL treated with vehicle (PVL-V) (n = 8) or gambogic amide (PVL-GA) (n = 8). Representative Western blots are shown below. Only bands corresponding to the phosphorylated form are exemplified in the case of the quantitation of ratios. Grouping of bands from different parts of the same gel are denoted by dividing lines.</p
    corecore