51 research outputs found

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years

    Disruption of Lateral Efferent Pathways: Functional Changes in Auditory Evoked Responses

    Full text link
    The functional consequences of selectively lesioning the lateral olivocochlear efferent system in guinea pigs were studied. The lateral superior olive (LSO) contains the cell bodies of lateral olivocochlear neurons. Melittin, a cytotoxic chemical, was injected into the brain stem using stereotaxic coordinates and near-field evoked potentials to target the LSO. Brain stem histology revealed discrete damage to the LSO following the injections. Functional consequences of this damage were reflected in depressed amplitude of the compound action potential of the eighth nerve (CAP) following the lesion. Threshold sensitivity and N1 latencies were relatively unchanged. Onset adaptation of the cubic distortion product otoacoustic emission (DPOAE) was evident, suggesting a reasonably intact medial efferent system. The present results provide the first report of functional changes induced by isolated manipulation of the lateral efferent pathway. They also confirm the suggestion that changes in single-unit auditory nerve activity after cutting the olivocochlear bundle are probably a consequence of disrupting the more lateral of the two olivocochlear efferent pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41379/1/10162_2002_Article_3018.pd

    Mausmutanten mit veränderten afferenten Synapsen der inneren Haarzellen als Tiermodelle der auditorischen Neuropathie

    No full text
    Die perisynaptische Audiopathie (auditorische Neuropathie) ist durch das Vorhandensein von otoakustischen Emissionen bei pathologischen auditorisch evozierten Potentialen gekennzeichnet. Die ursächlichen Pathomechanismen sind noch weitgehend unklar. Es könnte sich sowohl um Störungen des Hörvorganges im Bereich der inneren Haarzellen (IHZ), ihrer afferenten Synapsen oder des Hörnervs handeln . Die Charakterisierung der Pathomechanismen ist durch den Mangel an spezifischen audiologischen Tests, die zwischen Dysfunktionen an den genannten Strukturen unterscheiden könnten, limitiert. Wir untersuchen die Funktion der afferenten Synapse normaler und schwerhöriger Mäuse mit morphologischen sowie zell- und systemphysiologischen Methoden. Die zwei hier vorgestellten Tiermodelle, die Bassoon (synaptisches Protein) Mausmutante und die CaV1.3 (Ca2+ Kanal) Knockout-Maus, zeigen eine hochgradige Schwerhörigkeit bzw. Taubheit. In beiden Fällen liegt eine Dysfunktion der inneren Haarzelle und ihrer Synapsen vor, denen die synaptischen Bänder fehlen. Während in der CaV1.3 KO-Maus Depolarisationen wegen des fehlenden Ca2+-Einstroms auch bei langen Stimuli kaum Exozytose induzierten, beobachteten wir in den Bassoon-Mutanten nur einen selektiven Verlust der schnell freisetzbaren Vesikelpopulation (Readily Releasable Pool, RRP). Dieser Verlust des RRP führte zu einer pantonalen Anhebung der CAP-Schwelle um 50 dB

    Kainate and Nmda Toxicity for Cultured Developing and Adult Rat Spiral Ganglion Neurons: Further Evidence for a Glutamatergic Excitatory Neurotransmission at the Inner Hair Cell Synapse

    Full text link
    In the inner ear, the excitatory amino acid glutamate is a proposed neurotransmitter acting at the synapse between hair cells and afferent auditory neurons. Using cultures of 5-day-old rat auditory neurons, we show that the afferent auditory neuronal population can be divided, on the basis of its sensitivity to the neuronotoxic effect of glutamate and its analogs, in at least 3 subpopulations, one responding to N-methyl-D-aspartate (NMDA), one responding to kainate and a third minor one unresponsive to NMDA, kainic acid and glutamate. No toxic effect of quisqualate is observed. The use of specific antagonists (kynurenate and 2-amino-5-phosphonovalerate (DAP-5) demonstrates the specificity of the receptors to the excitatory amino acids on the afferent auditory neurons. Afferent auditory neurons from adult rats can also be cultured and in these preparations only the large neurons are sensitive to glutamate, kainate and NMDA while the small neurons are not responsive, suggesting that a glutamatergic neurotransmission occurs only at this synapse between the inner hair cells and the large radial afferent auditory neurons. We also show that, in vitro, the organ of Corti releases, in response to an increased potassium concentration and in the presence of calcium, a toxic activity for the afferent auditory neurons that is antagonized by kynurenate and DAP-5. Pathophysiological implications are discussed

    α10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells

    No full text
    We report the cloning and characterization of rat α10, a previously unidentified member of the nicotinic acetylcholine receptor (nAChR) subunit gene family. The protein encoded by the α10 nAChR subunit gene is most similar to the rat α9 nAChR, and both α9 and α10 subunit genes are transcribed in adult rat mechanosensory hair cells. Injection of Xenopus laevis oocytes with α10 cRNA alone or in pairwise combinations with either α2-α6 or β2-β4 subunit cRNAs yielded no detectable ACh-gated currents. However, coinjection of α9 and α10 cRNAs resulted in the appearance of an unusual nAChR subtype. Compared with homomeric α9 channels, the α9α10 nAChR subtype displays faster and more extensive agonist-mediated desensitization, a distinct current–voltage relationship, and a biphasic response to changes in extracellular Ca(2+) ions. The pharmacological profiles of homomeric α9 and heteromeric α9α10 nAChRs are essentially indistinguishable and closely resemble those reported for endogenous cholinergic eceptors found in vertebrate hair cells. Our data suggest that efferent modulation of hair cell function occurs, at least in part, through heteromeric nAChRs assembled from both α9 and α10 subunits

    Dopamine transporter is essential for the maintenance of spontaneous activity of auditory nerve neurones and their responsiveness to sound stimulation.

    No full text
    International audienceDopamine, a neurotransmitter released by the lateral olivocochlear efferents, has been shown tonically to inhibit the spontaneous and sound-evoked activity of auditory nerve fibres. This permanent inhibition probably requires the presence of an efficient transporter to remove dopamine from the synaptic cleft. Here, we report that the dopamine transporter is located in the lateral efferent fibres both below the inner hair cells and in the inner spiral bundle. Perilymphatic perfusion of the dopamine transporter inhibitors nomifensine and N-[1-(2-benzo[b]thiophenyl)cyclohexyl]piperidine into the cochlea reduced the spontaneous neural noise and the sound-evoked compound action potential of the auditory nerve in a dose-dependent manner, leading to both neural responses being completely abolished. We observed no significant change in cochlear responses generated by sensory hair cells (cochlear microphonic, summating potential, distortion products otoacoustic emissions) or in the endocochlear potential reflecting the functional state of the stria vascularis. This is consistent with a selective action of dopamine transporter inhibitors on auditory nerve activity. Capillary electrophoresis with laser-induced fluorescence (EC-LIF) measurements showed that nomifensine-induced inhibition of auditory nerve responses was due to increased extracellular dopamine levels in the cochlea. Altogether, these results show that the dopamine transporter is essential for maintaining the spontaneous activity of auditory nerve neurones and their responsiveness to sound stimulation
    corecore