1,312 research outputs found

    q-deformed harmonic and Clifford analysis and the q-Hermite and Laguerre polynomials

    Get PDF
    We define a q-deformation of the Dirac operator, inspired by the one dimensional q-derivative. This implies a q-deformation of the partial derivatives. By taking the square of this Dirac operator we find a q-deformation of the Laplace operator. This allows to construct q-deformed Schroedinger equations in higher dimensions. The equivalence of these Schroedinger equations with those defined on q-Euclidean space in quantum variables is shown. We also define the m-dimensional q-Clifford-Hermite polynomials and show their connection with the q-Laguerre polynomials. These polynomials are orthogonal with respect to an m-dimensional q-integration, which is related to integration on q-Euclidean space. The q-Laguerre polynomials are the eigenvectors of an su_q(1|1)-representation

    Planar Rayleigh scattering results in helium-air mixing experiments in a Mach-6 wind tunnel

    Get PDF
    Planar Rayleigh scattering measurements with an argon—fluoride excimer laser are performed to investigate helium mixing into air at supersonic speeds. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment is demonstrated in a large-scale, Mach-6 facility. The detection limit obtained with the present setup indicates that planar, quantitative measurements of density can be made over a large cross-sectional area (5 cm × 10 cm) of the flow field in the absence of clusters

    Self-Similar Potentials and the q-Oscillator Algebra at Roots of Unity

    Full text link
    Properties of the simplest class of self-similar potentials are analyzed. Wave functions of the corresponding Schr\"odinger equation provide bases of representations of the qq-deformed Heisenberg-Weyl algebra. When the parameter qq is a root of unity the functional form of the potentials can be found explicitly. The general q3=1q^3=1 and the particular q4=1q^4=1 potentials are given by the equianharmonic and (pseudo)lemniscatic Weierstrass functions respectively.Comment: 15 pp, Latex, to appear in Lett.Math.Phy

    Quasi-Continuous Symmetries of Non-Lie Type

    Full text link
    We introduce a smooth mapping of some discrete space-time symmetries into quasi-continuous ones. Such transformations are related with q-deformations of the dilations of the Euclidean space and with the non-commutative space. We work out two examples of Hamiltonian invariance under such symmetries. The Schrodinger equation for a free particle is investigated in such a non-commutative plane and a connection with anyonic statistics is found.Comment: 18 pages, LateX, 3 figures, Submitted Found. Phys., PACS: 03.65.Fd, 11.30.E

    (p,q)-Deformations and (p,q)-Vector Coherent States of the Jaynes-Cummings Model in the Rotating Wave Approximation

    Get PDF
    Classes of (p,q)-deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton state. These ladder operators allow for the construction of (p,q)-deformed vector coherent states. Using (p,q)-arithmetics, explicit and exact solutions to the associated moment problem are displayed, providing new classes of coherent states for such models. Finally, in the limit of decoupled spin sectors, our analysis translates into (p,q)-deformations of the supersymmetric harmonic oscillator, such that the two supersymmetric sectors get intertwined through the action of the ladder operators as well as in the associated coherent states.Comment: 1+25 pages, no figure

    Completeness of Coherent States Associated with Self-Similar Potentials and Ramanujan's Integral Extension of the Beta Function

    Full text link
    A decomposition of identity is given as a complex integral over the coherent states associated with a class of shape-invariant self-similar potentials. There is a remarkable connection between these coherent states and Ramanujan's integral extension of the beta function.Comment: 9 pages of Late

    Deformed quantum mechanics and q-Hermitian operators

    Full text link
    Starting on the basis of the non-commutative q-differential calculus, we introduce a generalized q-deformed Schr\"odinger equation. It can be viewed as the quantum stochastic counterpart of a generalized classical kinetic equation, which reproduces at the equilibrium the well-known q-deformed exponential stationary distribution. In this framework, q-deformed adjoint of an operator and q-hermitian operator properties occur in a natural way in order to satisfy the basic quantum mechanics assumptions.Comment: 10 page

    Operator identities in q-deformed Clifford analysis

    Get PDF
    In this paper, we define a q-deformation of the Dirac operator as a generalization of the one dimensional q-derivative. This is done in the abstract setting of radial algebra. This leads to a q-Dirac operator in Clifford analysis. The q-integration on R(m), for which the q-Dirac operator satisfies Stokes' formula, is defined. The orthogonal q-Clifford-Hermite polynomials for this integration are briefly studied

    Lattice Green Function (at 0) for the 4d Hypercubic Lattice

    Full text link
    The generating function for recurrent Polya walks on the four dimensional hypercubic lattice is expressed as a Kampe-de-Feriet function. Various properties of the associated walks are enumerated.Comment: latex, 5 pages, Res. Report 1

    Normal Ordering for Deformed Boson Operators and Operator-valued Deformed Stirling Numbers

    Full text link
    The normal ordering formulae for powers of the boson number operator n^\hat{n} are extended to deformed bosons. It is found that for the `M-type' deformed bosons, which satisfy aaqaa=1a a^{\dagger} - q a^{\dagger} a = 1, the extension involves a set of deformed Stirling numbers which replace the Stirling numbers occurring in the conventional case. On the other hand, the deformed Stirling numbers which have to be introduced in the case of the `P-type' deformed bosons, which satisfy aaqaa=qn^a a^{\dagger} - q a^{\dagger} a = q^{-\hat{n}}, are found to depend on the operator n^\hat{n}. This distinction between the two types of deformed bosons is in harmony with earlier observations made in the context of a study of the extended Campbell-Baker-Hausdorff formula.Comment: 14 pages, Latex fil
    corecore