68 research outputs found

    Conformal Enhancement of Holographic Scaling in Black Hole Thermodynamics: A Near-Horizon Heat-Kernel Framework

    Full text link
    Standard thermodynamic treatments of quantum field theory in the presence of black-hole backgrounds reproduce the black hole entropy by usually specializing to the leading order of the heat-kernel or the high-temperature expansion. By contrast, this work develops a hybrid framework centered on geometric spectral asymptotics whereby these assumptions are shown to be unwarranted insofar as black hole thermodynamics is concerned. The approach--consisting of the concurrent use of near-horizon and heat-kernel asymptotic expansions--leads to a proof of the holographic scaling of the entropy as a universal feature driven by conformal quantum mechanics.Comment: 13 pages, JHEP style. Added section 3 in the new version and a few typos were correcte

    Conformal Tightness of Holographic Scaling in Black Hole Thermodynamics

    Full text link
    The near-horizon conformal symmetry of nonextremal black holes is shown to be a mandatory ingredient for the holographic scaling of the scalar-field contribution to the black hole entropy. This conformal tightness is revealed by semiclassical first-principle scaling arguments through an analysis of the multiplicative factors in the entropy due to the radial and angular degrees of freedom associated with a scalar field. Specifically, the conformal SO(2,1) invariance of the radial degree of freedom conspires with the area proportionality of the angular momentum sums to yield a robust holographic outcome.Comment: 23 pages, 1 figure. v2 & v3: expanded explanations and proofs, references added, typos corrected; v3: published versio

    CP and Lepton-Number Violation in GUT Neutrino Models with Abelian Flavour Symmetries

    Get PDF
    We study the possible magnitudes of CP and lepton-number-violating quantities in specific GUT models of massive neutrinos with different Abelian flavour groups, taking into account experimental constraints and requiring successful leptogenesis. We discuss SU(5) and flipped SU(5) models that are consistent with the present data on neutrino mixing and upper limits on the violations of charged-lepton flavours and explore their predictions for the CP-violating oscillation and Majorana phases. In particular, we discuss string-derived flipped SU(5) models with selection rules that modify the GUT structure and provide additional constraints on the operators, which are able to account for the magnitudes of some of the coefficients that are often set as arbitrary parameters in generic Abelian models.Comment: 30 pages, 6 figure

    Local reactions after the fourth-dose of acellular pertussis vaccine in South Australia

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.ObjectiveTo assess the reported rate of local reactions after administration of acellular pertussis vaccine (DTPa) according to dose number and type of pertussis vaccine (whole-cell or acellular) used for the primary course, and to document the severity and outcome of fourth-dose local reactions.Design and settingRetrospective review. Reports of adverse events after vaccination in South Australia between 1 January 1997 and 31 December 2000 were reviewed, and a questionnaire administered to all parents who reported a local reaction after the fourth dose of DTPa.Main outcome measuresThe number, and rate per 100 000 administered doses, of local reactions following the primary and booster doses of DTPa, and of local reactions after the fourth-dose in cohorts of children whose primary vaccinations were with either DTPw or DTPa. Redness and/or swelling at the injection site as reported by parents.ResultsOf 581 reported adverse events after vaccination, 138 were local reactions after a pertussis-containing vaccine. Primary vaccinations with DTPa was a significant risk factor for a fourth-dose local reaction (relative risk, 6.7; 95% CI, 2.4-18.5). Parental questionnaires were completed for 45 of the 71 children (63%) with reported local reactions after the fourth dose of DTPa; extensive limb swelling was reported in 8 children (18%) and all except one child had recovered by the time of review.ConclusionsParents should be informed that children receiving booster doses of DTPa vaccine, after primary doses with DTPa, are at increased risk of local reactions (which tend to resolve spontaneously) but not of systemic effects. Studies should be initiated to investigate the pathogenesis and the risk of recurrence of local reactions to further improve vaccination schedules.Michael S Gold, Sara Noonan, Maggi Osbourn, Stella Precepa and Ann E Kemp

    Implications of the Quark Mass Hierarchy on Flavor Mixings

    Get PDF
    We stress that the observed pattern of flavor mixings can be partly interpreted by the quark mass hierarchy without the assumption of specific quark mass matrices. The quantitatively proper relations between the Kobayashi-Maskawa matrix elements and quark mass ratios, such as VcbVts2(msmbmcmt)[1+3(msmb+mcmt)],|V_{cb}| \approx |V_{ts}| \approx \sqrt{2} (\frac{m_s}{m_b} -\frac{m_c}{m_t}) [1 + 3 (\frac{m_s}{m_b} + \frac{m_c}{m_t} ) ], are obtainable from a simple {\it Ansatz} of flavor permutation symmetry breaking at the weak scale. We prescribe the same {\it Ansatz} at the supersymmetric grand unified theory scale, and find that its all low-energy consequences on flavor mixings and CPCP violation are in good agreement with current experimental data.Comment: Latex 19 pages including 5 PS figure

    Theory and Phenomenology of Type I strings and M-theory

    Get PDF
    The physical motivations and the basic construction rules for Type I strings and M-theory compactifications are reviewed in light of the recent developments. The first part contains the basic theoretical ingredients needed for building four-dimensional supersymmetric models, models with broken supersymmetry and for computing low-energy actions and quantum corrections to them. The second part contains some phenomenological applications to brane world scenarios with low values of the string scale and large extra dimensions.Comment: 129 pages, 7 eps figures, LaTeX, version to appear in Class. Quantum Gra

    Escherichia coli as a model active colloid:A practical introduction

    Get PDF
    The flagellated bacterium Escherichia coli is increasingly used experimentally as a self-propelled swimmer. To obtain meaningful, quantitative results that are comparable between different laboratories, reproducible protocols are needed to control, `tune' and monitor the swimming behaviour of these motile cells. We critically review the knowledge needed to do so, explain methods for characterising the colloidal and motile properties of E.coli, cells, and propose a protocol for keeping them swimming at constant speed at finite bulk concentrations. In the process of establishing this protocol, we use motility as a high-throughput probe of aspects of cellular physiology via the coupling between swimming speed and the proton motive force.Comment: 18 pages, 16 figures, 4 table

    Proceedings of the Second World Congress on Extensive Reading

    No full text
    corecore