61 research outputs found

    Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

    Full text link
    The determination of the energy spectra of small spin systems as for instance given by magnetic molecules is a demanding numerical problem. In this work we review numerical approaches to diagonalize the Heisenberg Hamiltonian that employ symmetries; in particular we focus on the spin-rotational symmetry SU(2) in combination with point-group symmetries. With these methods one is able to block-diagonalize the Hamiltonian and thus to treat spin systems of unprecedented size. In addition it provides a spectroscopic labeling by irreducible representations that is helpful when interpreting transitions induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure

    Biomarkers in Natural Fish Populations Indicate Adverse Biological Effects of Offshore Oil Production

    Get PDF
    Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills.Samples from natural populations of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs) were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea.It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production

    Efficacy of halopeRIdol to decrease the burden of Delirium In adult Critically ill patiEnts (EuRIDICE): study protocol for a prospective randomised multi-centre double-blind placebo-controlled clinical trial in the Netherlands

    Get PDF
    Introduction Delirium in critically ill adults is associated with prolonged hospital stay, increased mortality and greater cognitive and functional decline. Current practice guideline recommendations advocate the use of nonpharmacological strategies to reduce delirium. The routine use of scheduled haloperidol to treat delirium is not recommended given a lack of evidence regarding its ability to resolve delirium nor improve relevant short-term and longer-term outcomes. This study aims to evaluate the efficacy and safety of haloperidol for the treatment of delirium in adult critically ill patients to reduce days spent with coma or delirium. Methods and analysis EuRIDICE is a prospective, multicentre, randomised, double-blind, placebo-controlled trial. Study population consists of adult intensive care unit (ICU) patients without acute neurological injury who have delirium based on a positive Intensive Care Delirium Screening Checklist (ICDSC) or Confusion Assessment Method for the ICU (CAM-ICU) assessment. Intervention is intravenous haloperidol 2.5mg (or matching placebo) every 8 hours, titrated daily based on ICDSC or CAMICU positivity to a maximum of 5mg every 8 hours, until delirium resolution or ICU discharge. Main study endpoint is delirium and coma-free days (DCFD) up to 14 days after randomisation. Secondary endpoints include (1) 28-day and 1-year mortality, (2) cognitive and functional performance at 3 and 12 months, (3) patient and family delirium and ICU experience, (4) psychological sequelae during and after ICU stay, (4) safety concerns associated with haloperidol use and (5) cost-effectiveness. Differences in DCFDs between haloperidol and placebo group will be analysed using Poisson regression analysis. Study recruitment started in February 2018 and continues. Ethics and dissemination The study has been approved by the Medical Ethics Committee of the Erasmus University Medical Centre Rotterdam (MEC2017-511) and by the Institutional Review Boards of the participating sites. Its results will be disseminated via peer-reviewed publication and conference presentations

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Optimal tuning of thermodynamic-based decentralized PI control loops: application to the Tennessee eastman process

    Get PDF
    21 páginas, 24 figuras, 5 tablasThe need of designing decentralized control loops emerges to ensure the global stability of a given process plant. To that purpose, it has been proposed in recent works a systematic approach to derive robust decentralized controllers, which is based on the link between thermodynamics and passivity theory, as well as on the fundamentals of process networks. This thermodynamic-based control (TBC) methodology has several steps: (1) Decomposition of the considered process system into abstract mass and energy inventory networks; (2) design of conceptual mass and energy inventory control loops to guarantee the convergence of the states of the plant to a compact convex region defined by constant inventories, where input-output stability follows; (3) definition of intensive variable control loops (if needed) to achieve global stability, and (4) realization of the conceptual inventory and intensive variable control loops over the available degrees of freedom in the system by using, for instance, PI controllers. A tool to tune these PI control loops is developed, based on the solution of a nonlinear programming optimization problem (NLP), in order to complete the proposed hierarchical and systematic TBC design. The aim is to minimize a given cost function, subject to both the system dynamics, as well as the linear and nonlinear constraints (no disturbances affecting the system are considered), where the vector of decision variables will be formed by the parameters of the PI controllers used in the defined decentralized control loops. We will test this tuning procedure in several control designs developed for the challenging benchmark of the Tennessee Eastman Process (TEP) by Ricker and Larsson et al., as well as in two TBC candidates, concluding that the best candidate among the proposed ones (in terms of final cost function) will be one of these TBC designs. For solving the NLP problem, two local (FMINCON and NOMADm) solvers, and a new global (MITS) one are used, comparing their performances. Finally, the dynamic analysis of the optimal tuned closed loop systems is carried out, finding that the presented TBC control candidates will be stable, while the other control structures considered exhibit complex dynamic behaviors or even instability when disturbances affecting the process are consideredThe authors acknowledge the financial support received from the Spanish Government (MCyT Projects PPQ2001-3643), Xunta de Galicia (PGIDIT02-PXIC40209PN) and "PRIMS" Marie Curie Action (MRTN-CT-2004-512233).Peer reviewe

    Journalism as politics

    No full text

    Robust decentralized control for flexible plant operation: conceptual design and optimal tuning

    No full text
    6 pagesPeer reviewe

    A Tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design

    No full text
    15 páginas, 4 tablas, 4 figurasIn this contribution, we consider mixed-integer nonlinear programming problems subject to differential-algebraic constraints. This class of problems arises frequently in processdesign, and the particular case of integratedprocess and controlsystemdesign is considered. Since these problems are frequently non-convex, local optimization techniques usually fail to locate the global solution. Here, we propose a global optimization algorithm, based on extensions of the metaheuristic TabuSearch, in order to solve this challenging class of problems in an efficient and robust way. The ideas of the methodology are explained and, on the basis of two case studies, the performance of the approach is evaluated. The first benchmark problem is a Wastewater Treatment Plant model [Alex, J., Bteau, J. F., Copp, J. B., Hellinga, C., Jeppsson, U., Marsili-Libelli, S., et al. (1999). Benchmark for evaluating control strategies in wastewater treatment plants. In Proceedings of the ECC’99 conference] for nitrogen removal and the second case study is the well-known Tennessee Eastman Process [Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial processcontrol problem. Computers & Chemical Engineering, 17, 245-255]. Numerical experiments with our new method indicate that we can achieve an improved performance in both cases. Additionally, our method outperforms several other recent competitive solvers for the two challenging case studies consideredPeer reviewe
    corecore