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The need of designing decentralized control loops emerges to ensure the 

global stability of a given process plant. To that purpose, the authors have 

proposed in recent works a systematic approach to derive robust decentralized 

controllers, which is based on the link between thermodynamics and passivity 

theory as well as on the fundamentals of process networks. This Thermodynamic-

Based Control (TBC) methodology has several steps: i) Decomposition of the 

considered process system into abstract mass and energy inventory networks; ii) 

design of conceptual mass and energy inventory control loops to guarantee the 

convergence of the states of the plant to a compact convex region defined by 

constant inventories, where input-output stability follows; iii) definition of intensive 

variable control loops (if needed) to achieve global stability; iv) realization of the 

conceptual inventory and intensive variable control loops over the available 

degrees of freedom in the system by using, for instance, PI controllers. 

In this work, we develop a tool to tune these PI control loops, based on the 

solution of a nonlinear programming optimization problem (NLP), in order to 

complete the proposed hierarchical and systematic TBC design. The aim is to 

minimize a given cost function, subject to both the system dynamics as well as the 



linear and nonlinear constraints (no disturbances affecting the system are 

considered), where the vector of decision variables will be formed by the 

parameters of the PI controllers used in the defined decentralized control loops. 

We will test this tuning procedure in several control designs developed for the 

challenging benchmark of the Tennessee Eastman Process (TEP) by Ricker (1996) 

and Larsson et al. (2001) as well as in two TBC candidates, concluding that the 

best candidate among the proposed ones (in terms of final cost function) will be 

one of these TBC designs. For solving the NLP problem, two local (FMINCON and 

NOMADm) solvers and a new global (MITS) one are used, comparing their 

performances. 

Finally, the dynamic analysis of the optimal tuned closed loop systems is 

carried out, finding that the presented TBC control candidates will be stable while 

the other control structures considered exhibit complex dynamic behaviors or 

even instability when disturbances affecting the process are considered. 
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1.  Introduction 

Over the years, the area of decentralized plant-wide control has attracted 

the process engineering community as a challenging problem which drives 

continuing research efforts. The thermodynamic-based control (TBC) design 

procedure  tried to provide a systematic to this framework of the plant-wide 

control. A key step in this methodology is the formalism concerning the conceptual 

inventory control design, which ensures the convergence of the process states, 

both in terms of extensive as well as intensive variables, to compact regions of the 

state space constrained by constant total mass and energy. In these sets, 

thermodynamics gives us a function -the entropy of the system- which has a 

definite curvature (concavity ). Moreover, the function has a well-defined 

maximum in those regions. Such function will be the one employed to derive 

natural storage and Lyapunov function candidates of use in designing controllers 

for stabilizing the intensive variables of the network 3  (i.e. temperature, pressure 

and concentration). 

1
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These conceptual inventory control loops consist of linear proportional-

integral controllers for mass and energy inventories, which have to be translated 

into suitable control loops. This is the so called control loop realization 1, . In order to 

carry out this realization, the inventory control law has to be obtained as a 

combination of control loops implemented over the real manipulated variables 

available in the process. Although different control configurations could serve to 

that purpose, in this work we will apply PI controllers to close these loops. 

4

These proportional integral controllers are widely used in many real 

chemical plants due to their simplicity and easy on-line re-tuning, the availability of 



a large number of highly efficient, reliable and cost-efficient commercial PI (or PID) 

controllers and their acceptance from the operators. In the past decades, several 

papers concerning the tuning of PID controllers have been developed. Some of 

them deal with some kind of optimal approach. The development of PID tuning 

rules has been one of the major areas of research concerning the PID controller. 

The tuning of these type of controllers involves two steps: first, initial tunings are 

obtained by using well-known tuning rules 5, , for instance, Ziegler-Nichols or IMC-

based over a simplified model of the process. 

6

After this, the performance of the loop is improved by taking into account 

the operating specifications of the process considered. This tuning refinement can 

be seen as an optimization procedure, where the objective will be to minimize a 

cost function (related with the operating cost) preserving the stability of the 

closed-loop system. To deal with this stability issue, several options are possible. 

First, the cost function can be chosen in such a way that its minimization assures 

stability (which is limited by the lost of meaning that some parameters of the cost 

function exhibits). Other possibility is to set up the optimization problem with regard 

to a new parameter such that stability is guaranteed for any value of that 

parameter inside a given set. This is the basis of modern control approaches to 

linear control that are based on the controller parametrization theory  . 7,8

For the concrete case of the tuning of proposed decentralized control 

structures for the Tennessee Eastman Process benchmark, the authors 9 1  do not 

explicitly indicate in their woks the technique used or the way in which the tuning 

of the control loops is carried out. Moreover, in some cases 10, , even the values for 

the controller parameters are omitted to the reader. As a consequence, the 
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possibility of reproducing the results presented by the authors is lost. Summarizing, 

the tuning of many decentralized structures developed to the TEP seems to be 

developed in a trial-error way, which implies a considerable effort as well as 

several operational problems that depends on the selected set of controller 

parameters since the TEP states are highly related and the plant is open loop 

unstable. 

In this work, and in order to develop a robust and general optimization 

based procedure, we take advantage of the TBC design approach developed by 

Antelo et al. . It combines concepts from thermodynamics, inventory networks 

and process control to construct a set of stable and robust decentralized control 

candidate structures. Such candidates consist of inventory control loops designed 

so to ensure convergence of the mass and energy inventories to given references 

and thus guarantee stability of the extensive properties despite plant disturbances 

or even parameter uncertainty. Since the loops are defined over inventories, they 

contain almost every possible decentralized alternative. In this way, and by 

physically realizing the inventory control loops over the available degrees of 

freedom, the approach can be employed to construct a superstructure only 

containing stable (and robust) decentralized control candidates. It is on this set 

that NLP or MINLP problems can be defined to optimally tune the controllers and 

to select the best operational alternative, respectively. 

1,4

The proposed optimal controller tuning step will complete the TBC design, 

being the decision vector the set of parameters (gains and time constants) 

corresponding to the different PI control loops defined. We will apply this tuning 

tool for different control designs developed by Ricker (1996), Larsson et al. (2001) 



and Antelo et al. (2007b) for the benchmark of the Tennessee Eastman process. 

The paper is structured as follows: In Section 2, the Tennessee Eastman 

Process and the considered decentralized control structures designed to stabilize it 

are briefly described. The formulation of the nonlinear optimization problem as well 

as the methodologies selected to solve it are presented in Section 3. In Section 4, 

the results obtained for the optimal tuning applied for each of the control 

structures described in Section 2 are presented, comparing also the performance 

of the optimization solvers used. Finally, the dynamic performance of the optimal 

closed loop systems against a set of disturbances affecting the process during an 

extended time horizon is discussed in Section 5. The stability issue concerning the 

selected control structures is also discussed in this section. 

 

2.  A brief overview of the Tennessee Eastman process and its control 

approaches 

Since the publication of the TEP example 14 , it has been widely used in the 

literature as a benchmark due to its challenging properties from a control 

engineering point of view: it is highly nonlinear, open-loop unstable and it presents 

a large number of measured and manipulated variables which offer a wide set of 

candidates for possible control strategies. The flow sheet for the TEP is depicted in 

Figure 1. Two products (G and H) are produced from four reactants (A, C, D and 

E). A further inert trace component (B) and one byproduct (F) are present. The 

process units consists of a continuous stirred tank reactor, a condenser, a flash 

drum and a stripper. The gaseous reactants are fed to the reactor where they are 

transformed into liquid products. The following reactions take place in gas phase:  
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These reactions are irreversible and exothermic with rates that depend on 

temperature through Arrhenius expressions, and on the reactor gas phase 

concentration of the reactants. The reaction heat is removed from the reactor by 

a cooling bundle. The products and the unreacted feeds pass through a cooler 

and, once condensed, enter a vapour-liquid separator. The noncondensed 

components recycle back to the reactor feed and the condensed ones go to a 

product stripper in order to remove the remaining reactants by stripping with the 

feed stream. Products G and H are obtained in bottoms. The inert (B) and the 

byproduct (F) are mainly purged from the system as a vapour from the vapour-

liquid separator. 

As a benchmark problem, the Tennessee Eastman Process provides an 

opportunity for designers to propose and test their control strategies on a 

comparable basis. Since its first publication in 1993, researchers have attempted 

various control techniques on this benchmark, being the majority of the control 

solutions decentralized control schemes , process-model based control 17 , 

model predictive control 18  and neural network control19 . 

9 13,15,16−

For the case of the decentralized plant-wide control approaches, although 

some of the results use similar procedures, the solutions have been quite different 

since the control objectives were not specified in relative degrees of importance 

by Downs and Vogel (1993). As a consequence, researchers have tried to control 

certain aspects of the problem more thoroughly than others. In other words, the 



way in which they invent the control loops are drastically different due to these 

different researchers' interpretations of the control objectives. This have led to 

different selections on the pairing between the controlled variables and the 

degrees of freedom (first, to close the control loops and, after this, to satisfy the 

control objectives in the TEP). In this work, we confront two well-established control 

structures developed by Ricker (1996) and by Larsson et al. (2001) with the one 

recently proposed by Antelo et al. (2007a and 2007b) we refer here as the TBC 

(Thermodynamic-Based Control) structure. 

For the case of the control designs by Ricker (1996) and by Larsson et al. 

(2001), SIMULINK codes are available on the TEP Archive web page developed by 

Prof. Lawrence Ricker. On this basis, the authors have developed the SIMULINK 

model for the proposed TBC design. These codes are the tools which will allow the 

authors to both develop and solve the NLP tuning problem as well as to validate 

the dynamic response of the optimal tuned control structures. A brief description of 

each of these selected designs is presented next. 

 

2.1.  Selected control designs for the TEP 

The decentralized control scheme defined by Ricker (1996) operates over 

all operation modes defined by Downs and Vogel (1993) and is able to handle all 

set point changes and disturbance scenarios. The only drawbacks of this control 

structure are the slow response of the system to changes in the operating 

conditions and the complexity of the control algorithm12 . The key difference 

between the decentralized controller of Ricker and other decentralized designs is 

that the production rate variable is used in ratio controllers to control all of the 



flows (as shown in the small window of Figure 2). Ricker also focused on the 

selection of controlled variables, suggesting to control those which for optimal cost 

operation should be at their constraints. The author decided to control recycle 

valve position (at minimum), steam valve position (at minimum), reactor level (at 

minimum), reactor temperature (with the reactor coolant flow) and composition of 

A + C in reactor feed (with a ratio of the A and C feeds). The production rate 

manipulator is chosen as a combination of D and E. To complete the control loops 

acting over the reactor, he proposed to control its pressure by manipulating the 

purge rate. For the reactor level case, a cascade loop is developed where the 

reactor level set point is used to calculate the reference of the separator 

temperature control loop (that uses the condenser coolant flow as manipulated 

variable). Finally, the separator and stripper levels are controlled using the liquid 

outflows leaving both units. The resulting control design is as depicted in Figure 2. 

On the other hand, Larsson et al. (2001) followed up the work of Ricker 

(1996) on selecting controlled variables based on steady-state economics. They 

achieved good results by controlling, in addition to the optimally constrained 

variables (recycle valve position, steam valve position and agitation speed at their 

minimum values), the reactor temperature, the recycle flowrate (or compressor 

work), and the composition of C in purge (or in reactor feed) using the reactor 

coolant flowrate, the A feed and the A+C feed, respectively. The production rate 

variable is used in ratio controllers to control all of the flows while the % of product 

 in the product stream is controlled by a ratio of D and E feeds. The rest of the 

control loops involving reactor level and pressure, separator level and temperature 

and, stripper level are the same as those specified by Ricker (1996), as shown in 

G



Figure 3. 

Recently, Antelo et al. (2007b) applied their systematic thermodynamic-

based control (TBC) design developed in a previous work 1  to derive robust 

decentralized controllers for the Tennessee Eastman Process, ensuring the global 

stability of the plant.  In this TBC methodology, the authors combined the results 

that link thermodynamics with passivity theory. The basic ingridients of the theory 

have been established by Ydstie and Alonso in the context of passive control 

design and control of distributed systems 3 . A similar line of arguments was 

employed by Farschman et al. to derive mass and energy inventory control 

concepts. Finally, Antelo et al. 1  set the basis of exploiting the underlying algebraic 

structure of process networks to define a decomposition of fundamental networks 

into mass and energy inventory layers, over which conceptual inventory control 

loops can be easily defined.  

2
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 In this framework, the TEP is represented as a process network composed of 

coupled mass and energy inventory layers like the one depicted in Figure 4. In this 

Figure, each phase present in the process is represented by one circle denoting a 

node, and solid circles symbolize the environment (node 0). As stated in the 

previous work by the authors, a node is a well mixed homogeneous material 

region. To each node j  in the network,it is associated a state vector 1c
jz +∈R  of 

the form:  

  (2) 1= ( , , , )c
j j j jz n n u… T

where  represents the mole number of component k ,  is the internal energy 

and  stands for the total number of chemical species. The 

k
jn ju

c θ  nodes forming a 



process network as well as the environment can be interconnected through: i) 

convective fluxes which, for every node, we refer to as c
jf +∈R  and ( )j jp f +∈R  

for component and energy, respectively; ii) dissipative transfer fluxes collected in 

vectors  (with k=1...,c) and dk cϕ +∈R duψ +∈R , where  and  stand for mass and 

energy dissipative transfer, respectively. In Figure 4, these dissipative fluxes are 

represented by solid and dashed double-head arrows for mass and energy, 

respectively, while convective flows are denoted by solid (mass) and dashed 

(energy) single arrows. 

cd ud

We use this process network representation to design, for each node in both 

layers, conceptual mass and energy inventory control loops in order to guarantee 

that the states of the plant will remain on a convex invariant region, where the 

system will be passive, and therefore input-output stability can be stated. 

In order to exemplify this issue, let us consider that the process network 

corresponding to the TEP (Figure 4) can be simplified into a new network 

constituted by two nodes representing the reaction and the separation parts of 

the process, as presented in Figure 5 for the vapor mass layer of the TEP network. 

The R-node represents the reaction section and the S-node the separation section, 

respectively. The same representation is obtained when the energy layer is 

considered by representing the energy inventory flows in Figure 5 by dashed 

arrows. As shown in Figure 5, we have five possible inventory flow candidates to 

close the conceptual reactor vapor mass inventory control loop: i) the feed to R-

node, ii) the feed to S-node, iii) the convective inventory flow from R-node to S-

node, iv) the recycle inventory flow from S-node to R-node, and v) the outflow 

leaving S-node. Once this loop is established, we have four inventory flow 



alternatives remaining to define the separator vapor mass inventory control. 

Therefore, the total number of possible candidates to carry out the realization of 

these conceptual mass inventories becomes = 5 4 = 20candidatesN ⋅ . As a general rule, 

and whenever possible, we will use the total inventory flow leaving each node of 

the network. Therefore, the reactor and separator vapor mass loops will be closed 

by acting over the R-node and S-node outflows, respectively. The same logic 

applies to the liquid mass and energy layers of the TEP. 

The next step in the TBC design is to realize the proposed conceptual 

inventory control loops by using the physical inputs-outputs of the process, since 

the total inventory fluxes can be the result of combining multiple convective 

outflow streams. As a consequence, the inventory control law has to be obtained 

as a combination of control loops implemented over the real manipulated 

variables available in the process. Finally, and due to the fact that the inventory 

control by itself does not ensure the convergence of these variables to a desired 

operation point (Antelo et al., 2007a), some extra control loops are needed to 

achieve the convergence of the intensive variables. In some cases, the available 

degrees of freedom are not enough to implement the complete control structure 

that ensures both extensive and intensive variables convergence to the reference 

values. As a consequence, the set points of the inventory controllers can be used 

as new manipulated variables to complete the decentralized control design. 

Note that by applying the TBC approach, several stable control structure 

candidates can be defined. This is due to the fact that the definition and 

realization of the conceptual inventory control loops accepts different alternatives 

based on the inventory flow candidates available in each layer of the network. In 



other words, the TBC approach allows the designer to develop a superstructure 

containing all the stable control alternatives. 

In this work, we have considered a subset of this superstructure involving the 

vapor mass layer previously presented. Inside this subset, formed by 20 conceptual 

alternatives, two candidates are considered. The first one is the result of applying 

the TBC systematic design approach to the TEP, using the node outflows to control 

the mass inventories of the network. The resulting control structure is depicted in 

Figure 6. The main difference with respect to the control design proposed by 

Larsson et al. (2001) is that now the reactor pressure is controlled by acting over 

the condenser coolant flow. By using this variable, the vapor flow leaving the 

reactor can be modified and then, the reactor pressure can be controlled. In 

addition, there exists a composition control loop of component A in purge that 

uses as manipulated variable the set point of the separator level controller. The 

possibility of controlling the stripper temperature (energy inventory in this unit) can 

be also taken into account by manipulating the steam valve. 

The second alternative considered is the TBC structure depicted in Figure 7. 

In this case, a new realization of the inventory control loops for the nonlinear 

reactor vapor mass inventory is considered by acting over the purge. This 

manipulated variable for the reactor pressure loop is the one proposed in the 

works by Ricker (1996) and Larsson et al. (2001). Finally, a new candidate to control 

the reactor level (D Feed) as well as an extra loop controlling the separator 

temperature (energy inventory) by manipulating the condenser coolant flow are 

defined. 

Next, we present the formal statement of the optimization problem used to 



tune the PI control loops for a given process plant. This formulation will be illustrated 

by applying it to the particular case of the Tennessee Eastman Process. 

 

3.  Problem statement 

Let us start pointing out that the process network dynamics obey standard 

conservation principles for mole number and energy 1 :  

  (3) 0 0 0= , ; dk k k k k k k in N f N f N W n f f k cθ
φ ϕϕ γ +++ + + ∈ ∈� …R R ; = 1, , ;

;   (4) 0 0 0= , diu N p N p N Q u p pθ
φ ψψ

+++ + + ∈ ∈� R R

with  being the vector of external convective inputs (and  the number of 

inputs), and matrices , 

0
dif ∈R id

0
diN θ+ ×∈R N θ θ

φ
×∈R ,  and  describing 

dissipative and convective network interconnections. Finally, the extra-terms 

dcN θ
ϕ

×∈R duN θ
ψ

×∈R

ε W 

and  are related to chemical reaction units or external heat sources, 

respectively. For the reaction term, 

Q

ε  and W  are the stoichiometric and reaction 

rate vectors, respectively. 

By using the dissipative sub-network ( )jθD
1

A

, any process network can be 

viewed as the convective interconnection of  dissipative sub-networks. Each 

dissipative sub-network  has a given component and total inventory defined as:  D
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We also introduce  the following fluxes:  i∀ ∈D
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k
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The dissipative sub-network concept allows us to consider that any process 



network has an associated inventory network, which formally can be constructed 

by projecting Eqns. (3)-(4) onto a set of linear operators P θ
ϕ

×∈ AR  and P θ
ψ

×∈ AR  

satisfying  and .  = 0P Nϕ ϕ = 0P Nψ ψ

 = , ,n F n F ++ A� RI I I I ∈N R R  (7) 

  = ,u p u p +∈ A� RI I I IN  (8) 

where  are the vectors of inventories and fluxes, respectively,  

is the reaction term, and 

, , ,n u F p +∈ ARI I I I R

×∈ A ARN  is a column conservation matrix (Hangos et al., 

1999), so that 1 = 0T N . 

Finally, the corresponding mass inventory network representation for a 

dissipative subnetwork D  can be easily obtained by defining the following 

transformations:  
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where kσ  denotes the molecular weight of component , while  and k im iφ  

represent the hold-up and flow, in units of mass, associated to each node in the 

dissipative sub-network. Using relations (9) and (10), Eqn. (7) becomes:  

 = ,m mφ φ +∈ A� RI I I IN  (11) 

For the energy layer, we have:  

 = ,u p u p +∈ A� RI I I IN  (12) 

Note that the reaction term  in (11) disappears when projecting mole inventories 

onto mass inventories since the latter is a conserved property. 

R



In order to drive the system states to a given constant set defined by 

constant inventories, conceptual inventory control loops are defined by using 

proportional-integral controllers of the form:  

 ( ) ( )
0

1=
t

m
Im

m m m m d
T

φ φ ω∗ ∗ t∗
⎡ ⎤
⎢ ⎥+ − + −
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∫I I I I I I  (13) 

  ( ) ( )
0

1=
t

u
Iu

p p u u u u
T

ω∗ ∗ dt∗
⎡ ⎤
⎢ ⎥+ − + −
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∫I I I I I I  (14) 

where mω  and uω  are appropriate gains, while  and  are the time constants 

for the mass and energy layers, respectively. 

Im
T Iu

T

At this point, let us define the general optimization problem to minimize an 

objective function  under system dynamics and linear and/or nonlinear equality 

and inequality constraints:  

J

   ( ,  )min
v

J z v

                 (15) 
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where z   is the matrix containing the vector of states associated to each 

node j of the network, 

( 1)cθ× +∈R

z  is the time derivative of z , p  are a possible set of 

parameters characteristic of the system, v T= ( , , )IT,umm I u
ω ω  is the vector of 

decision variables, where 

1m m= (ω ω ,..., )T
m j

ω θ∈R ,
1

= ( ,..., )T
u u u j

ω ω ω θ∈R ,
1

I Im m
= ( , )Im j

T T T..., T θ∈R , 



1
= ( ,..., )T

I I Iu u u j
T T T  θ∈R  are the gain and time constant vectors for the mass and 

energy layers, respectively.  is the objective function to be minimized, J f  is the 

set of differential and algebraic equality constraints describing the system 

dynamics and  and  are possible equality and inequality path and/or point 

constraints which express additional requirements for the process performance. 

Lower and upper bounds restrict the search space for the decision variable vector 

 are given with v l  and v u . Therefore, the tuning of PI controllers of a given 

control structure may be carried out by solving an NLP problem as the one 

represented in Eqn. (15). 

h

v

g

For the concrete case of the considered TEP benchmark, the objective 

function proposed in the TEP definitions 14  is based on the operating costs and it 

can be defined as follows:  

=TC
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 (16) 

where  are the total operating costs at the base case,  and  are the 

purge costs and purge flowrate, respectively. Analogously, ,  and  are 

the costs associated to the product stream, compressor and steam, and ,  

and  are the product rate, the compressor work and the steam rate, 

respectively. Operating costs for this process are primarily determined by the loss of 

raw materials (in the purge, in the product stream and by means of the two side 

reactions). Economic costs for the process are determined by summing the costs 

of the raw materials and the products leaving in the purge stream and the 

PC

PrC

PR

CC

CW

TC

SR



product stream, and using an assigned cost to the amount of F formed. The costs 

concerning the compressor work and the steam to the stripper are also included. 

Note that the objective function used in the NLP formulation will be the mean of 

these operating costs along the whole simulation time horizon. For this work, the 

simulation time horizon was set to , as it can be considered enough time 

length for stabilization of the TEP. Later in this paper, the issue concerning the 

selection of the time horizon will be explained in more detail. Finally, note that no 

disturbances affecting the system are considered in this tuning procedure. 

= 10t h

With these considerations on the objective function, the optimal tuning 

problem can be represented as an NLP of the form of Eqn. (15):  

36
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             (17) 

The lower and upper bounds for the decision variables have been set to be 

the  of the initial value for the decision vector. This value has been chosen to 

avoid as much as possible problems related to valve saturation. These situations 

have been detected in preliminary dynamic simulations when considering a value 

of  of  as bounds for the decision vector. 
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Note that changes in the decision variables (v ) may drive the system to 

shutdown due to the fact that one or more of the constraints defined in (18) can 

be violated. 

 

4.  Solution and results 

In order to solve the problem presented in Eqn. (17), we have considered 

three different NLP solvers: 

1. FMINCON is a local gradient-based method, implemented as a part of 

the MATLAB Optimization Toolbox . This solver finds as local minimum of a 

constrained multivariable function by means of a SQP (Sequential Quadratic 

Programming) algorithm. The methods uses numerical or, if available, analytical 

gradients. 

®

2. NOMADm (Nonlinear Optimization for Mixed variable And Derivatives-

Matlab) is a MATLAB®  code that runs various Generalized Pattern Search (GPS) 

algorithms to solve nonlinear and mixed variable optimization problems. This 

solver  is suitable when local gradient-based solvers are not suitable since it does 

not require any derivative information to converge to a limit point that satisfies 

certain optimality conditions. However, this means that more function evaluations 

would normally be used by this solver than by a derivative-based approach. It uses 

the called Mesh Adaptive Direct Search (MADS) algorithm, which is an extension of 

21



pattern search methods to nonlinearly constrained optimization problem. 

3. MITS (Mixed-Integer Tabu Search) is a new global optimization 

algorithm  that is based on the metaheuristic Tabu Search (TS). This methodology 

may handle both NLP as well as Mixed-Integer NLPs (MINLPs), being a powerful tool 

based on an efficient algorithm obtained by advancing the approach  

proposed by Battiti and Tecchiolli (1996). They proposed a TS algorithm that is 

robust for any kind of functions and self-adjusting, so that no parameters have to 

be set. As in many algorithms for global optimization a local solver is used to 

identify a local minimum by starting from an initial point and in order to reach the 

global minimum a special strategy for deciding where to start the local solver is 

applied. The local solver MISQP is a special adaptation of a sequential quadratic 

programming method for the mixed-integer case  (see this reference for further 

information about this solver). 
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In addition, it must be pointed out that the dynamic models corresponding 

to the control structures by Ricker (1996) and Larsson et al. (2001) considered in this 

work has been obtained as SIMULINK codes from the Tennessee Eastman 

Challenge Archive developed by the Prof. Lawrence Ricker of the University of 

Washington †. The dynamic model for the proposed thermodynamic-based 

control design has been developed also as a SIMULINK code in the Process 

Engineering Group at IIM-CSIC. 

                                            

The optimal values obtained for the decision variables (controller 

parameters) as well as the final value for the objective function achieved by the 

solvers for each of the considered control structures are represented in Tables 1 

 
††http://depts.washington.edu/control/LARRY/TE/download.html 



(Ricker, 1996), 2 (Larsson et al., 2001) and 3 (Antelo et al., 2007b). In these Tables, 

 denotes the initial value for the decision vector and  and  represent 

the optimal values obtained by solving the NLP problem by using NOMADm and 

MITS solvers, respectively (with a limit of 8,000 function evaluations). Also note that 

these tables are divided into two different blocks, corresponding to the gains (left 

part) and the time constants (right part) of the PI controllers in each loop, 

respectively, showing that several of the optimal controller parameters correspond 

to the lower or upper bounds considered previously in the NLP formulation 

( ). Alternatively, one may consider expanding the ranges for the decision 

variables in order to avoid reaching the constraints. However, from a dynamic 

point of view, the system could exhibit saturation of several valves due to high gain 

values, which is not a desirable scenario. Furthermore, the computational cost for 

the optimization would be prohibitive. 

0v nomadv mitsv

0 0.5v ± 0v

In addition to this tuning, we take advantage of this optimization approach 

to carry out a comparison both in terms of efficiency and robustness among the 

methodologies used to solve the NLP problem defined in Eqn.(17) for the 

considered control designs for the TEP. Efficiency is related to the number of 

function evaluations required to arrive to the solution while robustness is related to 

the goodness final solution achieved. 

Regarding this last point (robustness), and looking into Table 1 

corresponding to Ricker's structure, it can be shown how the optimal point 

obtained by MITS is almost the same that the one found by NOMADm and better 

than the one reached by FMINCON (  = 105.58 $/h and  = 105.565 $/h for MITS 

and NOMADm, respectively). We have reduced the cost about more than 10 $/h 

J J



compared to the initial value of  = 115.80 $/h, obtained when original tune of the 

controllers is used. 

J

For the control design by Larsson et al. (2001), it is clearly shown in Table 2 

that MITS outperforms the other two solvers, being its best point (  = 90.508 $/h) 

better than the one found by NOMADm and FMINCON. We have reduced the 

cost about more than 32 $/h when compared to the starting point (  = 122.724 

$/h) and about 6.5 $/h when compared to the best point found by NOMADm. 

From an economical point of view, this is a remarkable improvement. 

J

J

Finally, for the case by Antelo et al. (2007b) the initial point of  for the 

solvers corresponds to an objective function value  = 156.8 $/h. Again, MITS 

achieves a better point than the one found by NOMADm and FMINCON (  = 

147.587 $/h for MITS versus  = 148.745 $/h obtained by NOMADm). The reduction 

with respect to the starting point is more than 9 $/h, and about 1.2 $/h when 

compared to the best point found by NOMADm. 

J

J

J

J

Despite this, the final value of the objective function obtained by this TBC 

control design is greater than for the other two considered case studies. The 

reason for this issue is that this particular control structure uses the purge as 

manipulated variable to control the separator vapor mass inventory. This fact 

leads to high values for the purge flowrate, and as a consequence high values of 

the cost function defined in Eqn. (16) (where the cost term associated to purge is 

the one with more weight). As a consequence, the conceptual inventory control 

concerning the mass inventories of the most important unit in the TEP (the reactor) 

was re-designed, finding a better control design candidate in terms of the 

objective function value. The proposed configuration, shown in Figure 7, uses D 



feed to close the reactor level control loop. In order to control the vapor mass 

inventory, the purge flow is used as the manipulated variable to close the reactor 

pressure control loop, as considered by Ricker (1996) and Larsson et al. (2001). In a 

general and systematic way, the optimal TBC control structure could be found 

among the set of candidates forming the so-called superstructure by defining and 

solving a complete mixed-integer nonlinear programming problem (MINLP) . This 

is the scope of future work to be developed by the authors. 
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For the shake of clarity, only the optimal tuning parameters obtained by 

MITS (since for this TEP case it is revealed as the best solver among the three 

considered in terms of robustness as it will be shown later in this paper) for this new 

TBC candidate (Figure 7) as well as the final value of the objective function are 

summarized in Table 4. The initial values of the parameters ( ) are the same that in 

Table 3. It can be stated how the final value obtained for the cost function is lower 

(  = 84.289 ) than the one obtained for both the initial realization carried out 

by the authors (  = 147.587 $/h) as well as for Ricker's and Larsson's designs (  = 

105.58 $/h and  = 90.508 $/h, respectively). The cost reduction is specially 

important with respect to the cost value obtained for the initial realization carried 

out by the authors (  63 $/h). This is due to the fact that the new control structure 

configuration (Figure 7) results in lower purge rates, since this variable is used as 

manipulated variable to control the reactor pressure. For the original realization 

(Figure 6), large variations in the separator vapor mass inventory can be stated. 

The reason is that we are using the coolant flow in the condenser to control the 

reactor pressure, modifying the condensation rate and, therefore, the separator 

pressure. As a consequence, strong actions over the purge rate are needed to 

0v

J $ / h

J J

J

≈



maintain the separator vapor mass inventory constant. This does not happen when 

the reactor pressure loop is closed with the purge rate. 

Summarizing, and from an economic point of view, it has been 

demonstrated that for the considered time horizon of 10 hours, an improvement of 

the objective function value from the initial points was obtained by this optimal 

tuning procedure whatever the control structure and the methodology used to 

solve the NLP problem was. More precisely, MITS offers the best results in terms of 

robustness. 

Let us consider now the efficiency analysis of the solvers. To that purpose, 

the convergence curves for the different solvers (Figures 8 to 10) are constructed, 

showing the evolution of the best value obtained by each solver along the 

number of objective function evaluations (or simulations). From Figures 8 to 10, it 

can be concluded that the new solver MITS outperforms the other selected 

methods in terms of efficiency, attaining a better value of the objective function in 

a fewer number of function evaluations, except for the case of the structure by 

Ricker (where the final value is almost the same that the one obtained by 

NOMADm, needing a fewer number of evaluations than MITS). 

The results obtained for the PI controller parameters by applying the 

described optimal tuning tool have to be dynamically tested in order to analyze 

the stability of the optimal closed loop system. This analysis is shown next. 

 

5.  Dynamic validation of the optimal tuning 

 As presented previously, the objective of the proposed tuning procedure 

will be to solve the defined NLP problem (Eq. 15) over a set of stable control loop 



candidates. In order to check this stability issue, dynamic simulations versus a 

selected set of disturbances between those proposed originally14  were carried 

out, testing the appropriate performance of the optimal tuned control structures 

considered. The chosen disturbances are:   

    • A random disturbance in the A,B,C feed composition: IDV(8).  

    • A step in the condenser cooling water inlet temperature: IDV(5).  

Regarding the time horizon issue, note that each evaluation of the 

objective function implies a simulation of the control structure considered along 10 

hours. Since the maximum number of function evaluations was set to 8,000, the 

selection of this time horizon was made so to avoid a inadmissible computational 

effort in terms of computation times. In this work, we look for results in relative 

admissible times. However, to test the validity of the obtained controller 

parameters for the different control designs considered, we will extend the time 

horizon until 100 hours. The idea is to check whether the optimal parameters 

obtained for the reduced time horizon will perform properly against disturbances 

for larger time periods, preserving the global stability of the plant. 

Note that in order to validate the performance of the considered control 

structures, we will analyze the evolution along the time horizon of the production 

rate (i.e, the stripper underflow), the G and H product composition and the reactor 

pressure and temperature. These states are related with both the main control 

objectives established originally by Downs and Vogel (1993) (product rate and 

composition) as well as with the highly nonlinear reactor (reactor temperature and 

pressure). For the sake of simplicity, we have minimized the amount of graphical 

results by showing the dynamic performance of the best optimal tuned control 



designs (those obtained by MITS). 

 

5.1.  Ricker's control structure 

Starting with the original controller parameters selected by Ricker for his 

structure (Figure 2), the dynamic response of the process versus IDV(8) can be 

shown in Figure 11, where a proper control action is stated, driving the system 

states to their references. Now, by considering the MITS optimal parameters ( ) 

summarized on Table 1, the response of the closed loop system for the same 

disturbance scenario is depicted in Figure 12. As it can be seen in the figure, an 

increment in the frequency and amplitude of the peaks for the states is detected. 

As explained in Section 3, this behavior can be due to valve saturation when 

reaching their lower and upper constraints (totally closed and/or opened). A clear 

illustration concerning this saturation issue affecting Ricker's control structure will be 

extended later when we will consider IDV(5) as the disturbance affecting the 

system. 

mitsv

Figure 13 shows the state evolution for the original Ricker's parameters 

against the other selected disturbance (IDV5 - a step change in the condenser 

water inlet temperature). This response is smoother than the one obtained for the 

closed loop system versus IDV(8) (Figure 11). 

The differences with respect the other disturbance scenario emerge when 

we consider for the control structure the optimal parameters obtained by MITS 

(Figure 14) since an oscillatory response affecting the system states appears. Note 

that the time horizon has been extended from  hours to  hours in 

order to show that the system will not shutdown despite the oscillations. The causes 

= 100t = 200t



for such a complex behavior concern valve saturation . For this concrete case, 

the dynamic response of the purge valve is as presented in Figure 15. An oscillatory 

behavior is generated by the fluctuation of the vapor mass inventory in the 

reactor, which defines the convex region, since the control variable considered to 

close this loop (the purge rate) reaches its upper and almost lower limits. Such 

oscillations will be transported to the whole process through the recycle rate and 

they are not desirable for proper plant operation. 

4

 

5.2.  Control structure by Larsson et al. 

As it was made for the Ricker's structure, we analyze the dynamic 

performance of this control design (Figure 3) for the nominal and optimized 

controller parameters (summarized in Table 2). Starting with the original parameters 

proposed by these authors, the closed loop response under disturbance IDV(8) is 

presented in Figure 16, stating a proper control action. The problems arises when 

we consider the optimal parameters obtained by MITS (Figure 17). It can be shown 

how the system destabilizes and shutdowns at 20t ≈  hours. This means that the 

control structure presented by Larsson et al. (2001) is not stable for all the search 

space considered for the controller parameters. The economic profit obtained by 

solving the NLP problem is higher than for the original parameters, but the dynamic 

performance of the proposed control design is not desirable since the closed loop 

system will be not stable. 

When IDV(5) disturbance is considered, it can be shown the good 

performance of the closed loop system with the original parameters (Figure 18). For 

the MITS case, the system fails and destabilizes again (Figure 19), but the shutdown 



happens at a larger time than for the IDV(8) case. 

 

5.3.  A TBC candidate 

Let us start, as it was made for the other structures, with the case of the 

closed loop system (Figure 6) with the original considered parameters acting versus 

IDV(8). The system states evolution is depicted in Figure 20, proving the stability for 

this original closed-loop system. Now, we use the MITS optimal values reflected in 

Table 3. The dynamic performance is shown in Figure 21. It can be checked how 

the optimal control structure stabilizes fast and properly the process, without the 

instability issues showed for this disturbance case, for instance, by the control 

structures by Larsson et al. (Figure 17). It must be pointed out that some peaks 

appears at the beginning of the simulation, corresponding to wide valves 

movements due to high gain values. 

The responses versus IDV(5) confirm that the proposed structure perform 

properly and ensures the global stability of the plant whatever the set of 

parameters used (the original one -Figure 22-, and those obtained via optimization 

by MITS -Figure 23). 

Now, consider the improved (in terms of cost) control design candidate 

presented in Figure 7. For the sake of clarity, only the dynamic performance of this 

structure versus IDV(5) is presented (Figure 24). In this Figure, the stability of the 

closed-loop TEP is again stated for this scenario. 

Summarizing, and from all the dynamic tests presented, it can be 

concluded that the proposed control structures obtained by applying the TBC 

approach will ensure the global stability of the TEP plant for all the optimal tuned PI 



controllers, completing this systematic design methodology. It was also proved 

that the optimal tuned control structures developed Ricker and Larsson et al. 

exhibit several stability problems such as oscillatory phenomena due to inventory 

oscillations or even shutdowns of the system, respectively. 

Finally, note that these non-smooth responses detected will be translated 

into an increment of the final value of the objective function for the extended time 

horizon of 100 hours considered. These values of the final objective function for 

 hours are summarized in Table 5. The values into brackets represents the 

variation in percentage in the final value of the objective function with respect to 

the value obtained when the initial parameters ( ) are considered for an 

extended time horizon of 100 h. As shown, most of the final cost values are greater 

than the one obtained with the original parameters in all structures and versus all 

the disturbances. This is due to the fact of that the NLP solution was obtained for 

the defined 10 hours time range and the simulations were carried out for the 

extended time of 100 hours. As explained before, considering this extended time 

horizon to solve the NLP problem could lead to better economic results (lower than 

for the original case), but the computational effort will be inadmissible. However, 

note that for the case of existing oscillations in the dynamic responses, these will 

not be translated into a drastic increment of the final value of the cost since the 

objective function is defined as the mean of the cost along the considered time 

horizon and, as a consequence, the upper and lower oscillations with respect the 

base cost will be compensated. 

= 100t

0v

6.  Conclusions 

In this contribution, a PI tuning tool based on the solution of a nonlinear 



programming optimization problem (NLP) was developed to complete the 

thermodynamic-based control (TBC) design by Antelo et al. (2007a). The proposed 

tuning approach was tested over several control structure candidates designed to 

the challenging benchmark of the Tennessee Eastman Process. When solving this 

optimization problem for each of the selected control design case studies (by 

Ricker, 1996; Larsson et al., 2001, and two different realizations of the conceptual 

inventory loops derived from the TBC methodology), it can be stated that the best 

candidate in terms of final values of the cost function will be the TBC one depicted 

in Figure 7. As pointed out previously in this work, it could be possible to find a 

better design by solving a MINLP problem inside the superstructure of TBC 

candidates. This will be the aim of future research work for the authors. 

When a comparasion among the solvers used to solve the tuning NLP 

problem is made, the new tabu search based global solver (MITS) offers the best 

compromise between efficiency and robustness (compared to FMINCON and 

NOMADm). 

After the optimal tuning, dynamic tests were carried out to validate and to 

check if the optimal parameters are suitable for stabilizing the system for different 

time horizons (the one considered for solving the NLP problem - - and an 

extended one - ). It is concluded that both Ricker's and Larsson's control 

structures exhibit complex (oscillations) or even unstable behaviors for given 

disturbance scenarios (IDV5 and IDV8), when extended time horizons are 

considered. However, the hierarchical designs derived from the TBC approach 

guarantee the global stability of the TEP whatever the time window, the set of 

controller parameters and/or the disturbance affecting the system considered. 

= 10t h

h= 100t
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Figure 1. The Tennessee Eastman Process flowsheet. 

 



 

Figure 2. Control structure proposed by Ricker (1996) for the TEP. 



 

Figure 3. Control structure proposed by Larsson et al. (2001) for the TEP. 



 

Figure 4. Process network for the TEP. 

 

Figure 5. Simplified process network for the TEP for the vapor mass layer. 

 



 

Figure 6. TBC candidate proposed by Antelo et al. (2007b) for the TEP. 

 



 

Figure 7. Alternative TBC structure obtained for the TEP. 
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Table 1. Optimal controller parameters for Ricker's control structure. 



 

Table 2. Optimal controller parameters for the control structure by Larsson et al. 

(2001). 

 

Table 3. Optimal controller parameters for the control structure by Antelo et al. 

(2007b). 



 

Table 4. Optimal tuning for the TBC structure (Figure 7). 

 

 

Table 5. Objective function values for all the control structures and disturbances in 

a time horizon of t=100 h. 


