535 research outputs found

    Evolutionary dynamics on degree-heterogeneous graphs

    Full text link
    The evolution of two species with different fitness is investigated on degree-heterogeneous graphs. The population evolves either by one individual dying and being replaced by the offspring of a random neighbor (voter model (VM) dynamics) or by an individual giving birth to an offspring that takes over a random neighbor node (invasion process (IP) dynamics). The fixation probability for one species to take over a population of N individuals depends crucially on the dynamics and on the local environment. Starting with a single fitter mutant at a node of degree k, the fixation probability is proportional to k for VM dynamics and to 1/k for IP dynamics.Comment: 4 pages, 4 figures, 2 column revtex4 format. Revisions in response to referee comments for publication in PRL. The version on arxiv.org has one more figure than the published PR

    Mutation, selection, and ancestry in branching models: a variational approach

    Full text link
    We consider the evolution of populations under the joint action of mutation and differential reproduction, or selection. The population is modelled as a finite-type Markov branching process in continuous time, and the associated genealogical tree is viewed both in the forward and the backward direction of time. The stationary type distribution of the reversed process, the so-called ancestral distribution, turns out as a key for the study of mutation-selection balance. This balance can be expressed in the form of a variational principle that quantifies the respective roles of reproduction and mutation for any possible type distribution. It shows that the mean growth rate of the population results from a competition for a maximal long-term growth rate, as given by the difference between the current mean reproduction rate, and an asymptotic decay rate related to the mutation process; this tradeoff is won by the ancestral distribution. Our main application is the quasispecies model of sequence evolution with mutation coupled to reproduction but independent across sites, and a fitness function that is invariant under permutation of sites. Here, the variational principle is worked out in detail and yields a simple, explicit result.Comment: 45 pages,8 figure

    Central limit theorem for multiplicative class functions on the symmetric group

    Full text link
    Hambly, Keevash, O'Connell and Stark have proven a central limit theorem for the characteristic polynomial of a permutation matrix with respect to the uniform measure on the symmetric group. We generalize this result in several ways. We prove here a central limit theorem for multiplicative class functions on symmetric group with respect to the Ewens measure and compute the covariance of the real and the imaginary part in the limit. We also estimate the rate of convergence with the Wasserstein distance.Comment: 23 pages; the mathematics is the same as in the previous version, but there are several improvments in the presentation, including a more intuitve name for the considered function

    Information and (co-)variances in discrete evolutionary genetics involving solely selection

    Full text link
    The purpose of this Note is twofold: First, we introduce the general formalism of evolutionary genetics dynamics involving fitnesses, under both the deterministic and stochastic setups, and chiefly in discrete-time. In the process, we particularize it to a one-parameter model where only a selection parameter is unknown. Then and in a parallel manner, we discuss the estimation problems of the selection parameter based on a single-generation frequency distribution shift under both deterministic and stochastic evolutionary dynamics. In the stochastics, we consider both the celebrated Wright-Fisher and Moran models.Comment: a paraitre dans Journal of Statistical Mechanics: Theory and Application

    Preservation of information in a prebiotic package model

    Full text link
    The coexistence between different informational molecules has been the preferred mode to circumvent the limitation posed by imperfect replication on the amount of information stored by each of these molecules. Here we reexamine a classic package model in which distinct information carriers or templates are forced to coexist within vesicles, which in turn can proliferate freely through binary division. The combined dynamics of vesicles and templates is described by a multitype branching process which allows us to write equations for the average number of the different types of vesicles as well as for their extinction probabilities. The threshold phenomenon associated to the extinction of the vesicle population is studied quantitatively using finite-size scaling techniques. We conclude that the resultant coexistence is too frail in the presence of parasites and so confinement of templates in vesicles without an explicit mechanism of cooperation does not resolve the information crisis of prebiotic evolution.Comment: 9 pages, 8 figures, accepted version, to be published in PR

    Stochastic slowdown in evolutionary processes

    Full text link
    We examine birth--death processes with state dependent transition probabilities and at least one absorbing boundary. In evolution, this describes selection acting on two different types in a finite population where reproductive events occur successively. If the two types have equal fitness the system performs a random walk. If one type has a fitness advantage it is favored by selection, which introduces a bias (asymmetry) in the transition probabilities. How long does it take until advantageous mutants have invaded and taken over? Surprisingly, we find that the average time of such a process can increase, even if the mutant type always has a fitness advantage. We discuss this finding for the Moran process and develop a simplified model which allows a more intuitive understanding. We show that this effect can occur for weak but non--vanishing bias (selection) in the state dependent transition rates and infer the scaling with system size. We also address the Wright-Fisher model commonly used in population genetics, which shows that this stochastic slowdown is not restricted to birth-death processes.Comment: 8 pages, 3 figures, accepted for publicatio

    Ordering in voter models on networks: Exact reduction to a single-coordinate diffusion

    Full text link
    We study the voter model and related random-copying processes on arbitrarily complex network structures. Through a representation of the dynamics as a particle reaction process, we show that a quantity measuring the degree of order in a finite system is, under certain conditions, exactly governed by a universal diffusion equation. Whenever this reduction occurs, the details of the network structure and random-copying process affect only a single parameter in the diffusion equation. The validity of the reduction can be established with considerably less information than one might expect: it suffices to know just two characteristic timescales within the dynamics of a single pair of reacting particles. We develop methods to identify these timescales, and apply them to deterministic and random network structures. We focus in particular on how the ordering time is affected by degree correlations, since such effects are hard to access by existing theoretical approaches.Comment: 37 pages, 10 figures. Revised version with additional discussion and simulation results to appear in J Phys

    Landscape statistics of the low autocorrelated binary string problem

    Full text link
    The statistical properties of the energy landscape of the low autocorrelated binary string problem (LABSP) are studied numerically and compared with those of several classic disordered models. Using two global measures of landscape structure which have been introduced in the Simulated Annealing literature, namely, depth and difficulty, we find that the landscape of LABSP, except perhaps for a very large degeneracy of the local minima energies, is qualitatively similar to some well-known landscapes such as that of the mean-field 2-spin glass model. Furthermore, we consider a mean-field approximation to the pure model proposed by Bouchaud and Mezard (1994, J. Physique I France 4 1109) and show both analytically and numerically that it describes extremely well the statistical properties of LABSP

    Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction

    Full text link
    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question---correlation, predictability, predictive cost, observer synchronization, and the like---induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II, to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.Comment: 24 pages, 3 figures, 4 tables; current version always at http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt1.ht

    Rank Statistics in Biological Evolution

    Full text link
    We present a statistical analysis of biological evolution processes. Specifically, we study the stochastic replication-mutation-death model where the population of a species may grow or shrink by birth or death, respectively, and additionally, mutations lead to the creation of new species. We rank the various species by the chronological order by which they originate. The average population N_k of the kth species decays algebraically with rank, N_k ~ M^{mu} k^{-mu}, where M is the average total population. The characteristic exponent mu=(alpha-gamma)/(alpha+beta-gamma)$ depends on alpha, beta, and gamma, the replication, mutation, and death rates. Furthermore, the average population P_k of all descendants of the kth species has a universal algebraic behavior, P_k ~ M/k.Comment: 4 pages, 3 figure
    • …
    corecore