Hambly, Keevash, O'Connell and Stark have proven a central limit theorem for
the characteristic polynomial of a permutation matrix with respect to the
uniform measure on the symmetric group. We generalize this result in several
ways. We prove here a central limit theorem for multiplicative class functions
on symmetric group with respect to the Ewens measure and compute the covariance
of the real and the imaginary part in the limit. We also estimate the rate of
convergence with the Wasserstein distance.Comment: 23 pages; the mathematics is the same as in the previous version, but
there are several improvments in the presentation, including a more intuitve
name for the considered function