Abstract

The statistical properties of the energy landscape of the low autocorrelated binary string problem (LABSP) are studied numerically and compared with those of several classic disordered models. Using two global measures of landscape structure which have been introduced in the Simulated Annealing literature, namely, depth and difficulty, we find that the landscape of LABSP, except perhaps for a very large degeneracy of the local minima energies, is qualitatively similar to some well-known landscapes such as that of the mean-field 2-spin glass model. Furthermore, we consider a mean-field approximation to the pure model proposed by Bouchaud and Mezard (1994, J. Physique I France 4 1109) and show both analytically and numerically that it describes extremely well the statistical properties of LABSP

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020