27 research outputs found
The Magnitude of Androgen Receptor Positivity in Breast Cancer Is Critical for Reliable Prediction of Disease Outcome
Purpose: Consensus is lacking regarding the androgen receptor (AR) as a prognostic marker in breast cancer. The objectives of this study were to comprehensively review the literature on AR prognostication and determine optimal criteria for AR as an independent predictor of breast cancer survival. Experimental Design: AR positivity was assessed by immunostaining in two clinically validated primary breast cancer cohorts [training cohort, n = 219; validation cohort, n = 418; 77% and 79% estrogen receptor alpha (ERÎą) positive, respectively]. The optimal AR cut-point was determined by ROC analysis in the training cohort and applied to both cohorts. Results: AR was an independent prognostic marker of breast cancer outcome in 22 of 46 (48%) previous studies that performed multivariate analyses. Most studies used cut-points of 1% or 10% nuclear positivity. Herein, neither 1% nor 10% cut-points were robustly prognostic. ROC analysis revealed that a higher AR cut-point (78% positivity) provided optimal sensitivity and specificity to predict breast cancer survival in the training (HR, 0.41; P = 0.015) and validation (HR, 0.50; P = 0.014) cohorts. Tenfold cross-validation confirmed the robustness of this AR cut-point. Patients with ERÎą-positive tumors and AR positivity âĽ78% had the best survival in both cohorts (P 0.87) had the best outcomes (P < 0.0001). Conclusions: This study defines an optimal AR cut-point to reliably predict breast cancer survival. Testing this cut-point in prospective cohorts is warranted for implementation of AR as a prognostic factor in the clinical management of breast cancer
Enhanced RAD21 cohesin expression confers poor prognosis and resistance to chemotherapy in high grade luminal, basal and HER2 breast cancers
Introduction: RAD21 is a component of the cohesin complex, which is essential for chromosome segregation and error-free DNA repair. We assessed its prognostic and predictive power in a cohort of in situ and invasive breast cancers, and its effect on chemosensitivity in vitro.Methods: RAD21 immunohistochemistry was performed on 345 invasive and 60 pure in situ carcinomas. Integrated genomic and transcriptomic analyses were performed on a further 48 grade 3 invasive cancers. Chemosensitivity was assessed in breast cancer cell lines with an engineered spectrum of RAD21 expression.Results: RAD21 expression correlated with early relapse in all patients (hazard ratio (HR) 1.74, 95% confidence interval (CI) 1.06 to 2.86, P = 0.029). This was due to the effect of grade 3 tumors (but not grade 1 or 2) in which RAD21 expression correlated with early relapse in luminal (P = 0.040), basal (P = 0.018) and HER2 (P = 0.039) groups. In patients treated with chemotherapy, RAD21 expression was associated with shorter overall survival (P = 0.020). RAD21 mRNA expression correlated with DNA copy number, with amplification present in 32% (7/22) of luminal, 31% (4/13) of basal and 22% (2/9) of HER2 grade 3 cancers. Variations in RAD21 mRNA expression in the clinical samples were reflected in the gene expression data from 36 breast cancer cell lines. Knockdown of RAD21 in the MDA-MB-231 breast cancer cell line significantly enhanced sensitivity to cyclophosphamide, 5-fluorouracil and etoposide. The findings for the former two drugs recapitulated the clinical findings.Conclusions: RAD21 expression confers poor prognosis and resistance to chemotherapy in high grade luminal, basal and HER2 breast cancers. RAD21 may be a novel therapeutic target
Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers
Introduction: Basal-like breast cancers behave more aggressively despite the presence of a dense lymphoid infiltrate. We hypothesised that immune suppression in this subtype may be due to T regulatory cells (Treg) recruitment driven by hypoxia-induced up-regulation of CXCR4 in Treg.Methods: Immunoperoxidase staining for FOXP3 and CXCL12 was performed on tissue microarrays from 491 breast cancers. The hypoxia-associated marker carbonic anhydrase IX (CA9) and double FOXP3/CXCR4 staining were performed on sections from a subset of these cancers including 10 basal-like and 11 luminal cancers matched for tumour grade.Results: High Treg infiltration correlated with tumour CXCL12 positivity (OR 1.89, 95% CI 1.22 to 2.94, P = 0.004) and basal phenotype (OR 3.14, 95% CI 1.08 to 9.17, P = 0.004) in univariate and multivariate analyses. CXCL12 positivity correlated with improved survival (P = 0.005), whereas high Treg correlated with shorter survival for all breast cancers (P = 0.001), luminal cancers (P < 0.001) and basal-like cancers (P = 0.040) that were confirmed in a multivariate analysis (OR 1.61, 95% CI 1.02 to 2.53, P = 0.042). In patients treated with hormone therapy, high Treg were associated with a shorter survival in a multivariate analysis (OR 1.78, 95% CI 1.01 to 3.15, P = 0.040). There was a tendency for luminal cancers to show CXCL12 expression (102/138, 74%) compared to basal-like cancers (16/27, 59%), which verged on statistical significance (P = 0.050). Up-regulation of CXCR4 in Treg correlated with the basal-like phenotype (P = 0.029) and tumour hypoxia, as indicated by CA9 expression (P = 0.049).Conclusions: Our data show that in the setting of hypoxia and CXCR4 up-regulation in Treg, CXCL12 expression may have the negative consequence of enhancing Treg recruitment and suppressing the anti-tumour immune response. Š 2011 Yan et al.; licensee BioMed Central Ltd
Cytoplasmic localization of β-catenin is a marker of poor outcome in breast cancer patients
β-catenin is involved in cell adhesion through catenin-cadherin complexes and as a transcriptional regulator in the Wnt signaling pathway. Its deregulation is important in the genesis of a number of human malignancies, particularly colorectal cancer. A range of studies has been undertaken in breast cancer, with contradictory associations reported among β-catenin expression, clinicopathologic variables, and disease outcome. We undertook an immunohistochemical study measuring the levels and subcellular localization of β-catenin in 292 invasive ductal breast cancers with known treatment and outcome. No association with breast cancer-specific death was observed for cytoplasmic or membrane expression alone; however, a continuous score representing both locations (membrane minus cytoplasmic expression: MTC score) was associated with a worse outcome in univariate analysis (P = 0.004), and approached significance in a multivariate analysis model that included lymph node, progesterone receptor (PR), and HER2 status (P = 0.054). Therefore, the MTC score was used for further statistical analyses due to the importance of both the subcellular location and the levels of expression of Ă¢-catenin. An association was identified between high cytoplasmic expression (low MTC score), and high tumor grade (P = 0.004), positive Ki67 (P = 0.005), negative estrogen receptor (ER) (P = 0.005), positive HER2 (P = 0.04) status, and an active phosphoinositide 3-kinase pathway (P = 0.005), measured as PIK3CA mutations (P = 0.05) or PTEN loss (P = 0.05). Low cytoplasmic expression (high MTC score) was associated with the luminal A subtype (P = 0.004). In conclusion, a low β-catenin MTC score is associated with an adverse outcome in breast cancer, which may be of mechanistic significance in the disease process
MicroRNA-related DNA repair/cell-cycle genes independently associated with relapse after radiation therapy for early breast cancer
Purpose: Local recurrence and distant failure after adjuvant radiation therapy for breast cancer remain significant clinical problems, incompletely predicted by conventional clinicopathologic markers. We had previously identified microRNA-139-5p and microRNA-1274a as key regulators of breast cancer radiation response in vitro. The purpose of this study was to investigate standard clinicopathologic markers of local recurrence in a contemporary series and to establish whether putative target genes of microRNAs involved in DNA repair and cell cycle control could better predict radiation therapy response in vivo. Methods and Materials: With institutional ethics board approval, local recurrence was measured in a contemporary, prospectively collected series of 458 patients treated with radiation therapy after breast-conserving surgery. Additionally, independent publicly available mRNA/microRNA microarray expression datasets totaling >1000 early-stage breast cancer patients, treated with adjuvant radiation therapy, with >10 years of follow-up, were analyzed. The expression of putative microRNA target biomarkers - TOP2A, POLQ, RAD54L, SKP2, PLK2, and RAG1 - were correlated with standard clinicopathologic variables using 2-sided nonparametric tests, and to local/distant relapse and survival using Kaplan-Meier and Cox regression analysis. Results: We found a low rate of isolated local recurrence (1.95%) in our modern series, and that few clinicopathologic variables (such as lymphovascular invasion) were significantly predictive. In multiple independent datasets (n>1000), however, high expression of RAD54L, TOP2A, POLQ, and SKP2 significantly correlated with local recurrence, survival, or both in univariate and multivariate analyses (P<.001). Low RAG1 expression significantly correlated with local recurrence (multivariate, P=.008). Additionally, RAD54L, SKP2, and PLK2 may be predictive, being prognostic in radiation therapy-treated patients but not in untreated matched control individuals (n=107; P<.05). Conclusions: Biomarkers of DNA repair and cell cycle control can identify patients at high risk of treatment failure in those receiving radiation therapy for early breast cancer in independent cohorts. These should be further investigated prospectively, especially TOP2A and SKP2, for which targeted therapies are available
ALDH2 mediates 5-nitrofuran activity in multiple species
Understanding how drugs work in vivo is critical for drug design and for maximizing the potential of currently available drugs. 5-nitrofurans are a class of pro-drugs widely used to treat bacterial and trypanosome infections, but despite relative specificity 5-nitrofurans often cause serious toxic side-effects in people. Here, we use yeast, zebrafish and human in vitro systems to assess the biological activity of 5-nitrofurans, and identify a conserved interaction between aldehyde dehydrogenase (ALDH) 2 and 5-nitrofurans across these species. In addition, we show that the activity of nifurtimox, a 5-nitrofuran anti-trypanosome pro-drug, is dependent on zebrafish Aldh2 and that nifurtimox is a substrate for human ALDH2. This study reveals a conserved and biologically relevant ALDH2-5-nitrofuran interaction that may have important implications for managing the toxicity of 5nitrofuran treatment.PostprintPeer reviewe
PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality
Breast cancer is a common malignancy with current biological therapies tailored to steroid hormone (ER, PR) and HER2 receptor status. Understanding the biological basis of resistance to current targeted therapies and the identification of new potential therapeutic targets is an ongoing challenge. The PI3K pathway is altered in a high proportion of breast cancers and may contribute to therapeutic resistance. We undertook an integrative study of mutational, copy number and expression analyses of key regulators of the PI3K pathway in a cohort of 292 invasive breast cancer patients with known treatment outcomes. The alterations identified in this cohort included PIK3CA mutations (12/168, i.e. 7%), PIK3CA copy number gain (28/209, i.e. 14%), PTEN loss (73/258, i.e. 28%) and AKT activation (62/258, i.e. 24%). Overall at least 1 parameter was altered in 72% (139/193) of primary breast cancers. PI3K pathway activation was significantly associated with ER negative (p = 0.0008) and PR negative (p = 0.006) status, high tumor grade (p = 0.032) and a âbasal-likeâ phenotype (p = 0.01), where 92% (25/27) of tumors had an altered pathway. In univariate analysis, PI3K pathway aberrations were associated with death from breast cancer; however, this relationship was not maintained in multivariate analysis. No association was identified between an activated pathway and outcome in tamoxifen- or chemotherapy-treated patients. We concluded that >70% of breast cancers have an alteration in at least 1 component of the PI3K pathway and this might be exploited to therapeutic advantage especially in âbasal-likeâ cancers
Identification of PUMA as an estrogen target gene that mediates the apoptotic response to tamoxifen in human breast cancer cells and predicts patient outcome and tamoxifen responsiveness in breast cancer
Recognition of the pivotal role of estrogen in the aetiology of breast cancer has led to the development of antiestrogens (AE), such as tamoxifen (TAM) as effective therapies for the treatment and prevention of this disease. However, despite their widespread clinical efficacy, response to AEs is often short-lived, and acquired or innate therapeutic resistance remains a major obstacle in the successful treatment of breast cancer. Thus, delineating the intracellular pathways that mediate the cellular response to estrogen could potentially lead to new, more effective approaches to the treatment of breast cancer, particularly endocrine-resistant disease. Here, we have identified the BCL-2 homology 3 (BH3)-only, pro-apoptotic regulator, PUMA (p53 upregulated modulator of apoptosis) as an estrogen target gene that is acutely downregulated in response to estrogen in breast cancer cell lines, independently of their p53 status. PUMA is transcriptionally upregulated following treatment with TAM, and knock down of PUMA expression in these cells attenuates the apoptotic response to TAM. Furthermore, low PUMA expression in breast carcinomas is significantly associated with breast cancer-specific death (P0.0014 and P0.0115, for mRNA and protein, respectively), and worse outcome in TAM-treated patients (mRNA, P1.49e-05). These findings suggest that the dysregulation of apoptotic signaling pathways such as those executed through PUMA, can significantly impact on both the progression and therapeutic responsiveness of breast cancer. Moreover, they provide a convincing rationale for exploring new therapeutic approaches involving endocrine and non-endocrine therapies that target apoptotic pathways as an effective strategy for tackling endocrine refractory disease