11 research outputs found
Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs
<p>Abstract</p> <p>Background</p> <p>Host protein-protein interaction networks are altered by invading virus proteins, which create new interactions, and modify or destroy others. The resulting network topology favors excessive amounts of virus production in a stressed host cell network. Short linear peptide motifs common to both virus and host provide the basis for host network modification.</p> <p>Methods</p> <p>We focused our host-pathogen study on the binding and competing interactions of HIV-1 and human proteins. We showed that peptide motifs conserved across 70% of HIV-1 subtype B and C samples occurred in similar positions on HIV-1 proteins, and we documented protein domains that interact with these conserved motifs. We predicted which human proteins may be targeted by HIV-1 by taking pairs of human proteins that may interact via a motif conserved in HIV-1 and the corresponding interacting protein domain.</p> <p>Results</p> <p>Our predictions were enriched with host proteins known to interact with HIV-1 proteins ENV, NEF, and TAT (p-value < 4.26E-21). Cellular pathways statistically enriched for our predictions include the T cell receptor signaling, natural killer cell mediated cytotoxicity, cell cycle, and apoptosis pathways. Gene Ontology molecular function level 5 categories enriched with both predicted and confirmed HIV-1 targeted proteins included categories associated with phosphorylation events and adenyl ribonucleotide binding.</p> <p>Conclusion</p> <p>A list of host proteins highly enriched with those targeted by HIV-1 proteins can be obtained by searching for host protein motifs along virus protein sequences. The resulting set of host proteins predicted to be targeted by virus proteins will become more accurate with better annotations of motifs and domains. Nevertheless, our study validates the role of linear binding motifs shared by virus and host proteins as an important part of the crosstalk between virus and host.</p
Contact-based ligand-clustering approach for the identification of active compounds in virtual screening
Alexey B Mantsyzov,1 Guillaume Bouvier,2 Nathalie Evrard-Todeschi,1 Gildas Bertho11Universit&eacute; Paris Descartes, Sorbonne, Paris, France; 2Institut Pasteur, Paris, FranceAbstract: Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM) represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.Keywords: scoring, docking, virtual screening, CAR, AuPosSO
NMR studies for identifying phosphopeptide ligands of the HIV-1 protein Vpu binding to the F-box protein beta-TrCP.
International audienceThe human immunodeficiency virus type 1 (HIV-1) Vpu enhances viral particle release and, its interaction with the ubiquitin ligase SCF-beta-TrCP triggers the HIV-1 receptor CD4 degradation by the proteasome. The interaction between beta-TrCP protein and ligands containing the phosphorylated DpSGXXpS motif plays a key role for the development of severe disease states, such as HIV or cancer. This study examines the binding and conformation of phosphopeptides (P1, LIERAEDpSG and P2, EDpSGNEpSE) from HIV protein Vpu to beta-TrCP with the objective of defining the minimum length of peptide needed for effective binding. The screening step can be analyzed by NMR spectroscopy, in particular, saturation transfer NMR methods clearly identify the residues in the peptide that make direct contact with beta-TrCP protein when bound. An analysis of saturation transfer difference (STD) spectra provided clear evidence that the two peptides efficiently bound beta-TrCP receptor protein. To better characterize the ligand-protein interaction, the bound conformation of the phosphorylated peptides was determined using transferred NOESY methods, which gave rise to a well-defined structure. P1 and P2 can fold in a bend arrangement for the DpSG motif, showing the protons identified by STD-NMR as exposed in close proximity at the molecule surface. Ser phosphorylation allows electrostatic interaction and hydrogen bond with the amino acids of the beta-TrCP binding pocket. The upstream LIER hydrophobic region was also essential in binding to a hydrophobic pocket of the beta-TrCP WD domain. These findings are in good agreement with a recently published X-ray structure of a shorter beta-Catenin fragment with the beta-TrCP complex.The human immunodeficiency virus type 1 (HIV-1) Vpu enhances viral particle release and, its interaction with the ubiquitin ligase SCF-beta-TrCP triggers the HIV-1 receptor CD4 degradation by the proteasome. The interaction between beta-TrCP protein and ligands containing the phosphorylated DpSGXXpS motif plays a key role for the development of severe disease states, such as HIV or cancer. This study examines the binding and conformation of phosphopeptides (P1, LIERAEDpSG and P2, EDpSGNEpSE) from HIV protein Vpu to beta-TrCP with the objective of defining the minimum length of peptide needed for effective binding. The screening step can be analyzed by NMR spectroscopy, in particular, saturation transfer NMR methods clearly identify the residues in the peptide that make direct contact with beta-TrCP protein when bound. An analysis of saturation transfer difference (STD) spectra provided clear evidence that the two peptides efficiently bound beta-TrCP receptor protein. To better characterize the ligand-protein interaction, the bound conformation of the phosphorylated peptides was determined using transferred NOESY methods, which gave rise to a well-defined structure. P1 and P2 can fold in a bend arrangement for the DpSG motif, showing the protons identified by STD-NMR as exposed in close proximity at the molecule surface. Ser phosphorylation allows electrostatic interaction and hydrogen bond with the amino acids of the beta-TrCP binding pocket. The upstream LIER hydrophobic region was also essential in binding to a hydrophobic pocket of the beta-TrCP WD domain. These findings are in good agreement with a recently published X-ray structure of a shorter beta-Catenin fragment with the beta-TrCP complex
STD and TRNOESY NMR studies on the conformation of the oncogenic protein beta-catenin containing the phosphorylated motif DpSGXXpS bound to the beta-TrCP protein
International audiencebeta-TrCP is the F-box protein component of an Skp1/Cul1/F-box (SCF)-type ubiquitin ligase complex. Biochemical studies have suggested that beta-TrCP targets the oncogenic protein beta-catenin for ubiquitination and followed by proteasome degradation. To further elucidate the basis of this interaction, a complex between a 32-residue peptide from beta-catenin containing the phosphorylated motif DpSGXXpS (P-beta-Cat(17-48)) and beta-TrCP was studied using Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR) experiments. These experiments make it possible to identify the binding epitope of a ligand at atomic resolution. An analysis of STD spectra provided clear evidence that only a few of the 32 residues receive the largest saturation transfer. In particular, the amide protons of the residues in the phosphorylated motif appear to be in close contact to the amino acids of the beta-TrCP binding pocket. The amide and aromatic protons of the His(24) and Trp(25) residues also receive a significant saturation transfer. These findings are in keeping with a recently published x-ray structure of a shorter beta-catenin fragment with the beta-TrCP1-Skp1 complex and with the earlier findings from mutagenesis and activity assays. To better characterize the ligand-protein interaction, the bound conformation of the phosphorylated beta-catenin peptide was obtained using TRansfer Nuclear Overhauser Effect SpectroscopY (TRNOESY) experiments. Finally, we obtained the bound structure of the phosphorylated peptide showing the protons identified by STD NMR as exposed in close proximity to the molecule surface.beta-TrCP is the F-box protein component of an Skp1/Cul1/F-box (SCF)-type ubiquitin ligase complex. Biochemical studies have suggested that beta-TrCP targets the oncogenic protein beta-catenin for ubiquitination and followed by proteasome degradation. To further elucidate the basis of this interaction, a complex between a 32-residue peptide from beta-catenin containing the phosphorylated motif DpSGXXpS (P-beta-Cat(17-48)) and beta-TrCP was studied using Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR) experiments. These experiments make it possible to identify the binding epitope of a ligand at atomic resolution. An analysis of STD spectra provided clear evidence that only a few of the 32 residues receive the largest saturation transfer. In particular, the amide protons of the residues in the phosphorylated motif appear to be in close contact to the amino acids of the beta-TrCP binding pocket. The amide and aromatic protons of the His(24) and Trp(25) residues also receive a significant saturation transfer. These findings are in keeping with a recently published x-ray structure of a shorter beta-catenin fragment with the beta-TrCP1-Skp1 complex and with the earlier findings from mutagenesis and activity assays. To better characterize the ligand-protein interaction, the bound conformation of the phosphorylated beta-catenin peptide was obtained using TRansfer Nuclear Overhauser Effect SpectroscopY (TRNOESY) experiments. Finally, we obtained the bound structure of the phosphorylated peptide showing the protons identified by STD NMR as exposed in close proximity to the molecule surface
Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP Axis
The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of a genetic program, termed the phase 2 response, that controls redox homeostasis and participates in multiple aspects of physiology and pathology. Nrf2 protein stability is regulated by two E3 ubiquitin ligase adaptors, Keap1 and β-TrCP, the latter of which was only recently reported. Here, two-dimensional (2D) gel electrophoresis and site-directed mutagenesis allowed us to identify two serines of Nrf2 that are phosphorylated by glycogen synthase kinase 3β (GSK-3β) in the sequence DSGISL. Nuclear magnetic resonance studies defined key residues of this phosphosequence involved in docking to the WD40 propeller of β-TrCP, through electrostatic and hydrophobic interactions. We also identified three arginine residues of β-TrCP that participate in Nrf2 docking. Intraperitoneal injection of the GSK-3 inhibitor SB216763 led to increased Nrf2 and heme oxygenase-1 levels in liver and hippocampus. Moreover, mice with hippocampal absence of GSK-3βexhibited increased levels of Nrf2 and phase 2 gene products, reduced glutathione, and decreased levels of carbonylated proteins and malondialdehyde. This study establishes the structural parameters of the interaction of Nrf2 with the GSK-3/β-TrCP axis and its functional relevance in the regulation of Nrf2 by the signaling pathways that impinge on GSK-3This work was supported by MICINN grant SAF2010-18722 from the
Spanish Ministry of Science and Innovation. Patricia Rada is contracted
under the Formación de Profesorado Universitario program of the Spanish
Ministry of Science and Innovation. We acknowledge funding and
infrastructural support from EEC 7th Framework Program, KU Leuven
Research Fund, and KU Leuven Research & Developmen