27 research outputs found

    Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors

    Get PDF
    To test the hypothesis that keratinocyte (KC) migration is modulated by distinct muscarinic acetylcholine (ACh) receptor subtypes, we inactivated signaling through specific receptors in in vitro and in vivo models of reepithelialization by subtype-selective antagonists, small interfering RNA, and gene knockout in mice. KC migration and wound reepithelialization were facilitated by M4 and inhibited by M3. Additional studies showed that M4 increases expression of “migratory” integrins α5ÎČ1, αVÎČ5, and αVÎČ6, whereas M3 up-regulates “sedentary” integrins α2ÎČ1 and α3ÎČ1. Inhibition of migration by M3 was mediated through Ca2+-dependent guanylyl cyclase–cyclic GMP–protein kinase G signaling pathway. The M4 effects resulted from inhibition of the inhibitory pathway involving the adenylyl cyclase–cyclic AMP–protein kinase A pathway. Both signaling pathways intersected at Rho, indicating that Rho kinase provides a common effector for M3 and M4 regulation of cell migration. These findings offer novel insights into the mechanisms of ACh-mediated modulation of KC migration and wound reepithelialization, and may aid the development of novel methods to promote wound healing

    The 2BFit study: is an unsupervised proprioceptive balance board training programme, given in addition to usual care, effective in preventing ankle sprain recurrences? Design of a Randomized Controlled Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is strong evidence that athletes have a twofold risk for re-injury after a previous ankle sprain, especially during the first year post-injury. These ankle sprain recurrences could result in disability and lead to chronic pain or instability in 20 to 50% of these cases. When looking at the high rate of ankle sprain recurrences and the associated chronic results, ankle sprain recurrence prevention is important.</p> <p>Objective</p> <p>To evaluate the effect of a proprioceptive balance board training programme on ankle sprain recurrences, that was applied to individual athletes after rehabilitation and treatment by usual care.</p> <p>Methods/Design</p> <p>This study was designed as a randomized controlled trial with a follow-up of one year. Healthy individuals between 12 and 70 years of age, who were actively participating in sports and who had sustained a lateral ankle sprain up to two months prior to inclusion, were eligible for inclusion in the study. The intervention programme was compared to usual care. The intervention programme consisted of an eight-week proprioceptive training, which started after finishing usual care and from the moment that sports participation was again possible. Outcomes were assessed at baseline and every month for 12 months. The primary outcome of this study was the incidence of recurrent ankle injuries in both groups within one year after the initial sprain. Secondary outcomes were severity and etiology of re-injury and medical care. Cost-effectiveness was evaluated from a societal perspective. A process evaluation was conducted for the intervention programme.</p> <p>Discussion</p> <p>The 2BFit trial is the first randomized controlled trial to study the effect of a non-supervised home-based proprioceptive balance board training programme in addition to usual care, on the recurrence of ankle sprains in sports. Results of this study could possibly lead to changes in practical guidelines on the treatment of ankle sprains. Results will become available in 2009.</p> <p>Trial registration</p> <p>ISTRCN34177180.</p

    Changes to the proteome and targeted metabolites of xylem sap in Brassica oleracea in response to salt stress

    Get PDF
    Root-to-shoot signalling via xylem sap is an important mechanism by which plants respond to stress. This signalling could be mediated by alteration in the concentrations of inorganic and/or organic molecules. The effect of salt stress on the contents of xylem sap in Brassica olarecea has been analysed by mass spectrometry in order to quantify these changes. Subcellular location of arabinogalactan proteins (AGPs) by immunogold labelling and peroxidase isozymes was also analysed by isoelectrofocusing. The xylem sap metabolome analysis demonstrated the presence of many organic compounds such as sugars, organic acids and amino acids. Of these, amino acid concentrations, particularly that of glutamine, the major amino acid in the sap, were substantially reduced by salt stress. The xylem sap proteome analysis demonstrated the accumulation of enzymes involved in xylem differentiation and lignification, such as cystein proteinases, acid peroxidases, and a putative hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase under salt stress. The peroxidase isozyme pattern showed that salt stress induced a high accumulation of an acid isoform. These results suggest that xylem differentiation and lignification is induced by salt stress. The combination of different methods to analyse the xylem sap composition provides new insights into mechanisms in plant development and signalling under salt stress

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Laboratory Study of ClNO:  Hydrolysis

    No full text

    Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels

    No full text
    Cnidarian envenomations cause a burning-pain sensation of which the underlying mechanisms are unknown. Activation of TRPV1, a non-selective cation channel expressed in nociceptive neurons, leads to cell depolarisation and pain. Here, we show in vitro and in vivo evidence for desensitization-dependent TRPV1 activation in cnidarian envenomations. Cnidarian venom induced a nociceptive reactivity, comparable to capsaicin, in laboratory rats, which could be reduced by the selective TRPV1 antagonist, BCTC. These findings are the first to explain at least part of the symptomology of cnidarian envenomations and provide insights into the design of more effective treatments for this global public health problem. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.status: publishe
    corecore