13 research outputs found
Recommended from our members
Toward an improved representation of middle atmospheric dynamics thanks to the ARISE project
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions
Characterization of multidirectional carbon-nanotube-yarn/bismaleimide laminates under tensile loading
Unidirectional, cross-ply, and quasi-isotropic composite laminates are made from continuous carbon nanotube (CNT) yarns with bismaleimide (BMI) resin. The laminates are highly graphitic and have low resin content. Elastic modulus and strength of CNT/BMI laminates and IM7/8552 carbon-epoxy laminates are measured using a scaled-down tensile test method. For CNT/BMI laminates, the variation in the measured tensile modulus is high and the laminates fail in a more gradual manner than IM7/8552 laminates. Microscopy of the failed specimens indicates that intra-yarn splitting is a common feature in all CNT/BMI laminates tested. The results of this investigation will inform the development of CNT yarn reinforced composites for structural applications
Scalable High Tensile Modulus Composite Laminates Using Carbon Nanotube Yarns
A novel approach is established for fabricating high-strength and high-stiffness composite laminates with continuous carbon nanotube (CNT) yarns for scaled-up mechanical tests and potential engineering applications. Continuous CNT yarns with up to 80% degree of nanotube alignment and a unique self-assembled graphitic CNT packing result in their specific tensile strengths up to 1.9 N/tex. Unidirectional CNT yarn reinforced composite laminates with a CNT concentration of greater than 80 wt.% and minimal microscale voids are fabricated using filament winding and aerospace-grade resin matrices. A specific tensile strength of up to 1.71 GPa/(g cm-3) and a specific modulus of 256 GPa/(g cm-3) are realized; the specific modulus exceeds current state-of-the-art IM7, T1100G and even M60J unidirectional carbon fiber composite laminates. The results demonstrate an effective approach transferring high-strength CNT yarns into composites for applications that require specific tensile modulus properties that are significantly beyond state-of-the-art carbon fiber composites, and potentially open a new performance region in the Ashby chart for composite material applications
Gamma-ray irradiation to achieve high tensile performance of unidirectional CNT yarn laminates
Continuous carbon nanotube (CNT) yarn fabricated from a floating catalyst chemical vapor deposition (FCCVD) method is treated under gamma-ray irradiation to enhance the mechanical properties of the CNT yarn and its unidirectional composite laminates. Gammy-ray doses varying from 50 kGy to 1200 kGy are used to irradiate CNT yarns and their microstructures, tensile properties and surface characterizations are studied. The graphitic structure change is not clear from the transmission electron microscopy, however, the specific tensile strength and modulus of yarn vary slightly within 10 % as the dose increased. This modulus trend coincides with mesoscopic distinct element modeling (mDEM) simulation results. Surface characterization shows additional oxygen functional groups and smaller contact angles after irradiation. Interestingly, the specific tensile properties of composite laminates also increase relative to the yarns, and the unidirectional laminate from CNT yarn treated with the optimal dose of 700 kGy achieves specific strength and modulus as high as 1.89 GPa/gcm−3 and 258 GPa/gcm−3, respectively, which are 30.9 % and 37 % increases compared to the control laminate. The results indicate that radiation-induced crosslinking among the CNTs and the formation of surface-active sites leads to enhanced load transfer in the yarns and promote CNT/resin interfacial bonding
Scalable High Tensile Modulus Composite Laminates Using Continuous Carbon Nanotube Yarns for Aerospace Applications
An approach is established for fabricating high-strength and high-stiffness composite laminates with continuous carbon nanotube (CNT) yarns for scaled-up mechanical tests and potential aerospace structure applications. Continuous CNT yarns with up to 80% degree of nanotube alignment and a unique self-assembled graphitic CNT packing result in their specific tensile strengths of 1.77 ± 0.07 N / tex and an apparent specific modulus of 92.6 ± 3.2 N / tex. Unidirectional CNT yarn reinforced composite laminates with a CNT concentration of greater than 80 wt % and minimal microscale voids are fabricated using filament winding and aerospace-grade resin matrices. A specific tensile strength of up to 1.71 GPa / (g cm) and specific modulus of 256 GPa/(g cm) are realized the specific modulus exceeds current state-of-the-art unidirectional carbon fiber composite laminates. The specific modulus of the laminates is 2.76 times greater than the specific modulus of the constituent CNT yarns, a phenomenon not observed in carbon fiber reinforced composites. The results demonstrate an effective approach for fabricating high-strength CNT yarns into composites for applications that require specific tensile modulus properties that are significantly beyond state-of-the-art carbon fiber composites and potentially open an unexplored performance region in the Ashby chart for composite material applications