19,444 research outputs found

    Inviscid limit of the active interface equations

    Get PDF
    We present a detailed solution of the active interface equations in the inviscid limit. The active interface equations were previously introduced as a toy model of membrane-protein systems: they describe a stochastic interface where growth is stimulated by inclusions which themselves move on the interface. In the inviscid limit, the equations reduce to a pair of coupled conservation laws. After discussing how the inviscid limit is obtained, we turn to the corresponding Riemann problem: the solution of the set of conservation laws with discontinuous initial condition. In particular, by considering two physically meaningful initial conditions, a giant trough and a giant peak in the interface, we elucidate the generation of shock waves and rarefaction fans in the system. Then, by combining several Riemann problems, we construct an oscillating solution of the active interface with periodic boundaries conditions. The existence of this oscillating state reflects the reciprocal coupling between the two conserved quantities in our system.Comment: 22 pages, 11 figure

    Investigating perceptions of cohesion, performance, and satisfaction in sport officiating groups

    Get PDF
    Since sport officials constitute instrumental groups, their perceptions of, and interactions with, group members likely influence their performance, satisfaction, and retention. This warrants investigation into sport officiating groups. Rationale/Purpose: (1) Examine the relationship between sport officials’ cohesion, satisfaction, and performance; (2) Investigate sport officials’ perceptions of cohesion across sports; and (3) Explore sport officials’ perceptions of group processes. Design/Methodology/Approach: Using a cross-sectional design, participants (N = 228) completed a survey measuring perceptions of cohesion, performance, and satisfaction. Findings: Responses demonstrated consistent positive relationships between cohesion, performance, and satisfaction. Path analysis found that task cohesion predicted performance and satisfaction. Participants rated task cohesion higher than social cohesion, with American football highest and Association football lowest. Practical implications: Officiating organizations can use these results to reconsider assigning practices and develop strategies that improve cohesion, leading to increased performance and retention. Research contribution: Results highlight the need for sustained research to further understand how group processes influence sport officials and their performances. This study is novel as there is a dearth of research on how group dynamics influence sport officials’ performances and retention.</p

    Kinase pathways in dominant and subordinate ovarian follicles during the first wave of follicular development in sheep

    Get PDF
    Abstract The mechanism by which one or more dominant ovarian follicles continue development while other subordinate follicles regress is not known. The mitogen activated protein kinases (MAPKs) are a group of kinases that are activated by hormonal factors and form a cascade of processes that regulate cell growth, division and differentiation. The aim of the present experiment was to characterise the presence of the MAPKs, Erk 1/Erk 2 and Akt in healthy dominant follicles and regressing subordinate follicles. Following in vivo monitoring of ovarian follicle development, three ewes were ovariectomised and the follicular fluid and follicle wall (theca and granulosa cells) saved from the dominant and largest subordinate follicle. The dissected diameter and follicular fluid oestradiol concentration of the dominant follicle was larger (P &lt; 0.01) than the largest subordinate follicle (6.5 ± 0.0 mm and 41.3 ± 4.9 ng/ml versus 4.7 ± 0.3 mm and 0.6 ± 0.4 ng/ml). Western blot analyses showed that there was more Akt (202.7 ± 6.4 versus 59.6 ± 32.7 units; P &lt; 0.05) and Erk 1/Erk 2 (104.5 ± 10.6 versus 0.3 ± 0.2 units; P &lt; 0.01) present in follicle wall samples from the dominant compared to the largest subordinate follicles. Phosphorylated forms of Akt and Erk 1/Erk 2 were detected in samples from dominant but not subordinate follicles. We suggest that signal transduction pathways involving Akt and Erk 1/Erk 2 may play an important role in determining the outcome of ovarian follicle growth and development in sheep

    Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence

    Get PDF
    Metformin, an oral hypoglycemic agent, has been used for decades to treat type 2 diabetes mellitus. Recent studies indicate that mice treated with metformin live longer and have fewer manifestations of age-related chronic disease. However, the molecular mechanisms underlying this phenotype are unknown. Here, we show that metformin treatment increases the levels of the microRNA-processing protein DICER1 in mice and in humans with diabetes mellitus. Our results indicate that metformin upregulates DICER1 through a post-transcriptional mechanism involving the RNA-binding protein AUF1. Treatment with metformin altered the subcellular localization of AUF1, disrupting its interaction with DICER1 mRNA and rendering DICER1 mRNA stable, allowing DICER1 to accumulate. Consistent with the role of DICER1 in the biogenesis of microRNAs, we found differential patterns of microRNA expression in mice treated with metformin or caloric restriction, two proven life-extending interventions. Interestingly, several microRNAs previously associated with senescence and aging, including miR-20a, miR-34a, miR-130a, miR-106b, miR-125, and let-7c, were found elevated. In agreement with these findings, treatment with metformin decreased cellular senescence in several senescence models in a DICER1- dependent manner. Metformin lowered p16 and p21 protein levels and the abundance of inflammatory cytokines and oncogenes that are hallmarks of the senescence-associated secretory phenotype (SASP). These data lead us to hypothesize that changes in DICER1 levels may be important for organismal aging and to propose that interventions that upregulate DICER1 expression (e.g., metformin) may offer new pharmacotherapeutic approaches for age-related disease

    D3/D7 Quark-Gluon Plasma with Magnetically Induced Anisotropy

    Get PDF
    We study the effects of the temperature and of a magnetic field in the setup of an intersection of D3/D7 branes, where a large number of D7 branes is smeared in the transverse directions to allow for a perturbative solution in a backreaction parameter. The magnetic field sources an anisotropy in the plasma, and we investigate its physical consequences for the thermodynamics and energy loss of particles probing the system. In particular we comment on the stress-energy tensor of the plasma, the propagation of sound in the directions parallel and orthogonal to the magnetic field, the drag force of a quark moving through the medium and jet quenching.Comment: 29 pages + appendices, 5 figures. v2 Version to appear in JHEP, with minor revisions, references added and typos correcte

    Technicolor and Beyond: Unification in Theory Space

    Get PDF
    The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount at the enhancement of the anomalous dimension of the mass of the techniquarks allowing to decouple the Flavor Changing Neutral Currents problem from the one of the generation of the top mass. Precision data constraints are reviewed focussing on the latest crucial observation that the S-parameter can be computed exactly near the upper end of the conformal window (Conformal S-parameter) with relevant consequences on the selection of nature's next strong force. We will then introduce the Minimal Walking Technicolor (MWT) models. In the second part of this review we consider the interesting possibility to marry supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle physiscs. A surprising result is that a minimal (in terms of the smallest number of fields) supersymmetrization of the MWT model leads to the maximal supersymmetry in four dimensions, i.e. N=4 SYM.Comment: Extended version of the PASCOS10 proceedings for the Plenary Tal

    Glassy timescale divergence and anomalous coarsening in a kinetically constrained spin chain

    Get PDF
    We analyse the out of equilibrium behavior of an Ising spin chain with an asymmetric kinetic constraint after a quench to a low temperature T. In the limit T\to 0, we provide an exact solution of the resulting coarsening process. The equilibration time exhibits a `glassy' divergence \teq=\exp(const/T^2) (popular as an alternative to the Vogel-Fulcher law), while the average domain length grows with a temperature dependent exponent, \dbar ~ t^{T\ln 2}. We show that the equilibration time \teq also sets the timescale for the linear response of the system at low temperatures.Comment: 4 pages, revtex, includes two eps figures. Proof of energy barrier hierarchy added. Version to be published in Phys Rev Let

    Three-Dimensional Microfluidic Tri-Culture Model of the Bone Marrow Microenvironment for Study of Acute Lymphoblastic Leukemia

    Get PDF
    Acute lymphoblastic leukemia (ALL) initiates and progresses in the bone marrow, and as such, the marrow microenvironment is a critical regulatory component in development of this cancer. However, ALL studies were conducted mainly on flat plastic substrates, which do not recapitulate the characteristics of marrow microenvironments. To study ALL in a model of in vivo relevance, we have engineered a 3-D microfluidic cell culture platform. Biologically relevant populations of primary human bone marrow stromal cells, osteoblasts and human leukemic cells representative of an aggressive phenotype were encapsulated in 3-D collagen matrix as the minimal constituents and cultured in a microfluidic platform. The matrix stiffness and fluidic shear stress were controlled in a physiological range. The 3-D microfluidic as well as 3-D static models demonstrated coordinated cell-cell interactions between these cell types compared to the compaction of the 2-D static model. Tumor cell viability in response to an antimetabolite chemotherapeutic agent, cytarabine in tumor cells alone and tri-culture models for 2-D static, 3-D static and 3-D microfluidic models were compared. The present study showed decreased chemotherapeutic drug sensitivity of leukemic cells in 3-D tri-culture models from the 2-D models. The results indicate that the bone marrow microenvironment plays a protective role in tumor cell survival during drug treatment. The engineered 3-D microfluidic tri-culture model enables systematic investigation of effects of cell-cell and cell-matrix interactions on cancer progression and therapeutic intervention in a controllable manner, thus improving our limited comprehension of the role of microenvironmental signals in cancer biology
    • 

    corecore