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Inviscid limit of the active interface equa-
tions

Francesco Cagnetta and Martin R. Evans
SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie
Tait Road, Edinburgh EH9 3FD, United Kingdom

E-mail: F.Cagnetta@ed.ac.uk

Abstract. We present a detailed solution of the active interface equations in
the inviscid limit. The active interface equations were previously introduced as
a toy model of membrane-protein systems: they describe a stochastic interface
where growth is stimulated by inclusions which themselves move on the interface.
In the inviscid limit, the equations reduce to a pair of coupled conservation laws.
After discussing how the inviscid limit is obtained, we turn to the corresponding
Riemann problem—the solution of the set of conservation laws with discontinuous
initial condition. In particular, by considering two physically meaningful initial
conditions, a giant trough and a giant peak in the interface, we elucidate the
generation of shock waves and rarefaction fans in the system. Then, by combin-
ing several Riemann problems, we construct an oscillating solution of the active
interface with periodic boundaries conditions. The existence of this oscillating
state reflects the reciprocal coupling between the two conserved quantities in our
system.
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Scaling limits of the active interface equations

1 Introduction

The dynamics of kinetically roughened interfaces is by now a classic problem of statistical
mechanics[1, 2]. Though the story goes back as far as the sixties, with the introduction of the
Eden model for growing aggregates [3], it was not until the eighties that the problem gained
significant traction amongst physicists: see, for instance, the work of Edwards and Wilkin-
son on the Langevin description of growing interfaces [4], or that of Witten and Sander on
Diffusion-limited aggregates [5]. What primarily fostered such an interest was the realisation
that interfaces of this kind display a scaling behaviour parallel to that of equilibrium phase
transitions [6]. It was, in fact, the related principle of universality that guided Kardar, Parisi
and Zhang in proposing a stochastic, partial differential equation for the time-dependent profile
of a growing interface—the KPZ equation [7]. A moving interface is necessarily out of thermo-
dynamic equilibrium, nevertheless, the scaling concepts developed for equilibrium problems can
be applied with minor, if any, alterations. The ensuing KPZ universality class, in particular,
turned out to include much more than growing interfaces and is now a cornerstone in the physics
of driven systems [8, 9].

A driven system is taken to be held out of equilibrium due to some external driving force.
Many far-from-equilibrium systems, however, especially those inspired by biological problems,
are of a different nature, in that they are kept from relaxing by the continuous energy input at
the micro-scales. They are generically referred to as active systems, and they have taken centre
stage of statistical mechanics in the last few years. In an endeavour to bridge the theories of
active matter and kinetic roughening, we introduced in [10] the active interface equations

∂tρ = Γ∂x (ρ∂xh) +D∂2
xxρ+ ζρ,

∂th = Λρ
[
1− (∂xh)2

]
+ν∂2

xxh+ ζh,
(1)

for the two fields h(x, t) and ρ(x, t), representing the interface height and the inclusion den-
sity, respectively (ζρ/h are the corresponding Gaussian noises). In the specific context of cell
membrane dynamics, the height would be the cell’s leading edge position, while the density field
would refer to proteic inclusions living in the membrane, specifically those that catalyse growth.
We will also adopt the terminology “inclusion” for general considerations beyond this context.

As in the case of the KPZ equation, which can be obtained from (1) by forcing ρ(x, t) to be
constant, the active interface equations can be derived from symmetry considerations. The new
feature is that the h↔ −h symmetry breaking, necessary for growth, is effected by the inclusion
density rather than an external field. The physics represented by the active interface equations is
fairly simple. A collection of inclusions (density ρ(x, t)) perform overdamped Brownian motion
(D∂2

xxρ and ζρ) within the interface plane. In addition, each inclusion is coupled to the interface
height h(x, t), so that the interface slope is a source of advection for the inclusion density
(∂x (ρ∂xh)). In fact, the density equation can be derived within the framework of conserved
field dynamics [11, 12],

∂tρ = −∂x (M(ρ)∂xµρ) + ∂x

(√
2M(ρ)ξ

)
,

where the mobility is given by M(ρ) = Dρ and the chemical potential µρ is related to a free
energy F(ρ),

µρ = −dF
dρ
, F(ρ) =

Γ

D
ρh+ ρ log (ρ),

3



Scaling limits of the active interface equations

consisting of a linear coupling with the interface height (ρh) and an entropic ideal gas contribu-
tion (ρ log ρ). The interface, in turn, experiences fluctuations (generated by the term ζh) and a
deterministic smoothening due to a surface tension (generated by ν∂2

xxh). The effect of the in-
clusions is that of growth stimulation, and it is represented by the up-down-symmetry-breaking
term proportional to ρ. The positive coefficient Λ is the signature of the out-of-equilibrium
nature of the model: if we try to derive the height equation from the density free energy, even
including the surface tension term

∫
dx ν (∂xh)2, we find a negative Λ term. The non-equilibrium

nature of the model is, of course, compatible with the assumption of local energy input: instead
of pushing the interface down as free energy minimisation would require, the inclusions exploit
the provided energy to lift the interface up. The consequences of the sign flip are striking:
we have explored some of them in [10, 13]. The most suggestive emergent behaviour is the
organisation of the inclusions into a number of small clusters that generate and surf interface
ripples.

In this paper we will focus on the inviscid limit of the deterministic active interface equations.
The inviscid limit, as the name suggests, neglects “viscous” contributions of Laplacian form,
that is the diffusion and surface tension in the inclusions/interface language. This allows us to
put dissipation aside for a moment and focus on the deterministic interaction between the fields
h and ρ. The inviscid limit has proved fruitful in the context of interacting particle systems [14].
For example Burgers’ equation—which is the noiseless KPZ equation after a change of variable—
has an inviscid limit which reveals phenomena, such as shocks and rarefaction waves, relevant to
the full viscous, stochastic equation. Shocks and rarefaction waves turn out to be fundamental
also for the active interface dynamics, though, as we will show, they do not originate from a
nonlinearity of the KPZ type.

The construction of solutions to the inviscid active interface equations, obtained by com-
posing shock waves and rarefaction fans, is the central result of this paper. Namely we find how
a wedge-shaped trough is filled in and a wedge-shaped peak is smoothened over. We then use
these solutions on the infinite system to interpret the oscillatory dynamics observed on a finite,
periodic system observed in [10]. Furthermore, we can predict characteristic features such as
the interface width oscillation period, the inclusion cluster size and the cluster wave speed, all
of which are relevant to possible experiments on real active interfaces.

The remainder of paper is structured as follows. In the first part (Section 2), we recall KPZ-
like active interface model defined in [10] and describe how the terms in the field equations arise
from the microscopic rules. We close the section by considering the model inviscid limit. In the
remainder of the paper we adopt nonlinear PDEs techniques to solve the inviscid equations. In
particular, we focus on discontinuous initial conditions (the Riemann problem) on the infinite
system. The solutions are presented in detail in Section 3. We use these solutions to understand
the oscillatory dynamics of a finite system in Section 4. Lastly, in Section 5, we will comment
briefly on the effects of noise and viscous terms on the emerging scenario.

2 The active interface model

Let us begin with the definition of the microscopic active interface model. The model was first
introduced in [10] and consists of a discrete interface and a collection of inclusions, as shown in
Fig. 1 (the interface is the black solid line and the inclusions the red dots). Both the interface and
the inclusions live on the one-dimensional lattice, with periodic boundary conditions enforcing
the ring topology. The number of lattice sites is L and we set the lattice spacing to a = l/L, so
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Figure 1: Schematic illustration of the lattice active interface. Associated with each site there is an height—
distance of the black solid line from the reference ticked horizontal line at the bottom—and a number of
inclusions—number of red discs sitting on the site. All the possible interface transitions are denoted by black
vertical arrows, with a black dashed line representing the outcome of the transition. Particle jumps instead are
represented with red horizontal lines. Interface height growth is enhanced by the presence of inclusions and occurs
with rate p+, as on the i+ 1-th site in the figure whereas interface height decrease is suppressed by the inclusions
and occurs with rate p−, as on the i-th site in the figure. The slopes in the interface advect the inclusions, as on
the j-th site where k(j, j + 1) > k(j, j − 1)—the actual rates are defined in the text.

that the ring circumference equals l. The discrete interface is given by a set of heights over the
lattice points {hi(t)}i=1,...,L and obeys the solid-on-solid condition [15, 16] |hi+1(t)− hi(t)| = 1,
which endows the interface with surface tension.

Each inclusion is a random walker making jumps between neighbouring lattice sites. The
walker dynamics is thus specified by the two (site-dependent) jump rates k(i, i+1) and k(i, i−1),
which we define as

k(i, i± 1) =

{
q+, if hi > hi±1,

q−, if hi < hi±1.
(2)

According to Eq. (2), inclusions slide down negative slopes at rate q+ and climb up positive
slopes at rate q−.

The interface, in turn, evolves according to a dynamics which preserves the solid-on-solid
condition |hi+1(t) − hi(t)| = 1. According to this condition, each site i of the interface can
be a peak, a trough or a slope. If there is a peak at i, then hi = hi+1 + 1 = hi−1 + 1,
so that the interface can be symbolically represented as ∧. If, instead, i is a trough, then
hi = hi+1 − 1 = hi−1 − 1 and the height profile looks like ∨. Slopes, finally, can be either
positive (hi+1 − 1 = hi = hi−1 + 1, �) or negative (hi+1 + 1 = hi = hi−1 − 1, �). Each trough
can grow and become a peak at rate p+(i) whereas peaks become troughs at rate p−(i), so that
the solid-on-solid condition is preserved at all times. To account for the growth-stimulating
action of the inclusions, we take the interface rates p± to depend on the number of inclusions
on the i-th lattice site at time t, ni(t) (there is no exclusion interaction between inclusions), i.e.

p±(i) = p±(ni) . (3)

A mean-field style derivation of the field equations from microscopic rules analogous to
those defined here was given in the supplementary material of [10]. Here we will improve upon
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that derivation, by considering values of p± and q± that lead to a factorised steady state: we
prove the existence of such steady state in section 2.1, then use it to derive the active interface
equations in section 2.2.

2.1 Factorised steady state

In this section we show that, under a particular condition on the rates, the factorised probability
measure

Pss({hi} , {ni}) = Z−1
L,N

L∏
j=1

f(nj), (4)

is invariant for the dynamics described above. Equation (4) states that the stationary state
probability is independent of the interface configuration, {hi}, and depends on the configuration
of particles {ni} in a factorised way which implies vanishing of correlations in the large system
limit. In Eq. (4), f(n) = (q+ + q−)−n /n! and

ZL,N =

′∑
{hi}

∑
{ni}

L∏
j=1

f(nj)δ

 L∑
j=1

nj −N

 , (5)

where the ′ on the hi’s sum represents the solid-on-solid condition |hi+1(t) − hi(t)| = 1. The
proof, needed for the following section, follows the lines of the calculation of the steady-state
probability of zero-range processes (ZRP) [17].

In order to determine when Eq. (4) holds, we first write the master equation for Pt({hi} , {ni})
as

∂tPt({hi} , {ni}) =

L∑
j=1

(IN−OUT)j , (6)

where INj and OUTj are gain and loss terms relative to transition occurring at the j-th site, e.g.
a change of hj or an inclusion jumping in or out the j-th lattice site. The interface configuration
is completely specified once the locations of local maxima and minima are given (together with
the absolute height of one of them). Between a minimum at i and a maximum at i + k, for
instance, there will be a “cluster” of positive slopes. In such a cluster, if i < j < i+ k,

(IN−OUT)j =(nj−1 + 1)q−Pt ({hi} , . . . , nj−1 + 1, nj − 1, . . . )

+(nj+1 + 1)q+Pt ({hi} , . . . , nj − 1, nj+1 + 1, . . . )

+ [nj(q+ + q−)]Pt ({hi} , . . . , nj−1, nj , nj+1, . . . ) ,

(7)

The first term in (7) stems from the transition (nj−1 + 1, nj − 1) → (nj−1, nj) (total rate
(nj−1 + 1)q− on a positive slope), the second from the transition (nj − 1, nj+1 + 1)→ (nj , nj+1)
(total rate (nj+1 + 1)q+) and the last from (nj , nj+1) → (nj − 1, nj+1 + 1) and (nj−1, nj) →
(nj−1 + 1, nj − 1). As shown in [17], the contribution to the master equation right-hand side
vanish on Pss given by Eq. (4), with

f(n) =
n∏
l=1

1

l(q+ + q−)
=

(q+ + q−)

n!

−n
. (8)

Similarly the same f(n) as above causes (IN−OUT)j to vanish also if j belongs to a cluster of
negative slopes, i.e. there is a height maximum at i, a minimum at i+ k and i < j < i+ k.

6
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In the case of maxima and minima of the height, i.e. the aforementioned clusters boundaries,
one has interface transitions at j in addition to the inclusion transitions. If, for instance, j is a
height minimum (such as the i+ 1-th lattice site in Fig. 1), inclusions move from j ± 1 to j at
rate q+ while jumping out of j at rate q+, so that the contribution from inclusion transitions is

(IN−OUT)INCL
j = 2nj (q+ − q−)Z−1

L,N

[
L∏
i=1

f(ni)

]
. (9)

The additional contribution to the master equation, coming from the interface transition (in at
rate p−, out at rate p+, cf. Fig. 1), is simply

(IN−OUT)INT
j = [p−(nj)− p+(nj)]Z

−1
L,N

[
L∏
i=1

f(ni)

]
, (10)

because (4) does not depend on the interface configuration. The inclusions and interface terms
(9) and (10) balance each other if and only if

p+(nj)− p−(nj) = 2 (q+ − q−)nj . (11)

One can check that condition (11) also emerges in balancing interface and inclusions transitions
at interface height maxima. Therefore, it is the condition on the model rates which guarantees
that the probability in (4) is invariant for the model dynamics.

2.2 Field equations & inviscid limit

In this section we derive the systematic part of (1) for the special choice of parameters Γ = Λ,
corresponding to a choice of microscopic rates which satisfies condition (11) of the previous sec-
tion. We will make use of the well-known mapping between single-step interfaces and exclusion
processes [15]. The mapping, illustrated in Fig. 1, transforms the interface into a particle sys-
tem on the half-lattice i+ 1/2, i = 1, . . . , L, such that a particle is associated to every negative
slope and a hole to every positive slope. By calling ηi+ 1

2
the occupation number of the particle

system sites,
1− 2ηi+ 1

2
= hi+1 − hi. (12)

The single-step condition ensures ηi+ 1
2

= 0, 1 and hence implies an exclusion interaction between

particles.
By calling dJ it the net current of particles from i− 1/2 to i+ 1/2 between t and t+ dt, one

has
dηi+ 1

2
(t) = −dJ i+1

t + dJ it ≡ −∇idJ it , (13)

where ∇i is a shorthand for the lattice gradient. Via the mapping, each particle jump cor-
responds to an interface transition occurring with a given rate, so that, after incorporating
exclusion in the rates〈

dJ it
〉

=
〈
p−(i)

[
ηi+ 1

2

(
1− ηi− 1

2

)]
− p+(i)

[
ηi− 1

2

(
1− ηi+ 1

2

)]〉
dt

=

〈
−p+(i) + p−(i)

2
∇iηi− 1

2
+
p+(i)− p−(i)

2

(
ηi− 1

2
+ ηi+ 1

2
− 2ηi− 1

2
ηi+ 1

2

)〉
dt.

(14)

7
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As in condition (11), we set (p+(ni) − p−(ni))/2 equal to (q+ − q−)ni. We can then perform
the averages above with the steady-state measure (4), so that the average of the n′is and of the
ηi+ 1

2
(which are determined by the h′is) factorise. Thus, we are left with

d

dt

〈
ηi+ 1

2
(t)
〉

=∇i
(〈

p+(ni) + p−(ni)

2

〉
∇i
〈
ηi− 1

2

〉)
− (q+ − q−)∇i

(
〈ni〉

〈
ηi− 1

2
+ ηi+ 1

2
− 2ηi− 1

2
ηi+ 1

2

〉) (15)

As the average is performed with the measure (4), also
〈
ηi− 1

2
ηi+ 1

2

〉
can be factorised (in the

limit (19) to be discussed below). In addition, we will assume that〈
ηi+ 1

2
(t)
〉

= η(x, t)|x=a×(i+ 1
2

), 〈ni(t)〉 = ρ(x, t)|x=a×i, (16)

where a is the lattice spacing and η(x, t), ρ(x, t) smooth functions of x, and set, without loss of
generality, p− = p with constant p. Hence, by keeping only the leading orders in a, we get

∂tη(x, t) = −a2(q+ − q−)∂x [ρη (1− η)] + a2p∂2
xxη + a2(q+ − q−)∂x (ρ∂xη) . (17)

We can, analogously, build an equation as (13) for dni(t), then extract an equation for ρ(x, t)
which reads

∂tρ(x, t) = a
(q+ − q−)

2
∂x [ρ (1− 2η)] + a2∂x

[
(q+ + q−)

2
∂xρ

]
. (18)

In order to complete the derivation, we must specify a choice of q±. Here we consider
q± = q (q ± aγ), so that, as in [10], aγ measures the strength of the inclusion advection, which
vanishes with the lattice spacing in the continuum limit. As a result, the last term in Eq. (17)
becomes of order a3 while all the others are of order a2. Thus, in the limit

a→ 0 and qa2 → D, (19)

after performing the change of variables 2η = 1− ∂xh, and setting Γ ≡ γD, ν = p/q, we obtain
the deterministic active interface equations

∂tρ = Γ∂x (ρ∂xh) +D∂2
xxρ,

∂th = Γρ
[
1− (∂xh)2

]
+ν∂2

xxh .
(20)

In the general Λ 6= Γ case, the equations above bear the same relationship to the stochastic
active interface equations (1) as the Burgers’ equation bears to the KPZ equation.

We have used a choice of model parameters satisfying (11) for which the stationary state
factorises to derive equations (20). Let us stress that the derivation is not generally exact, as
it assumes no correlations between the ni’s and the h′is—such an assumption is not expected
to hold for all the model parameters choices. However, we propose these equations as an
approximation for all parameter values. The inviscid limit, obtained with a joint D, ν → 0
limit while keeping Γ and Λ fixed, could be probed by looking at the Euler scale rather than
the diffusive one, i.e. by scaling the microscopic model rates p and q with a while performing
the continuum limit a → 0 [14]. That procedure, however, would require a less transparent
definition of the microscopic rules. Furthermore, it would produce viscous terms of vanishingly
small intensity, but different from the simple Laplacians of Eq. (20). Hence, we will take the
inviscid limit by simply taking D, ν → 0 in the equations obtained at the diffusive scale. This,
as shown in [14], is still a legitimate way of probing the Eulerian behaviour of a system.

8



Scaling limits of the active interface equations

Figure 2: The anticipated solutions, giant trough (left) and giant peak (right), shown in the height-density
variables (solid lines, blue for height and orange for density). Dashed lines denote the corresponding initial
condition: while the trough is filled with inclusions as time progresses, the peak is depleted. Note that the trough
in the height generates a pair of shock waves in the density profile whereas the peak in the height generates a
pair of rarefaction waves.

3 Solving the inviscid limit

Making a simple change of variable to u = ∂xh, the interface slope rather than the bare height,
yields the form of the inviscid active interface equations that we consider in this paper,

∂t

(
ρ
u

)
+ ∂x

(
−Γρu

−Λρ(1− u2)

)
= 0. (21)

We now replace the driving term Λρ(1 − u2) in the height equation by Λρ i.e. we neglect
the KPZ-like nonlinearity (∇h)2 in the height equation. The reason for doing this is that we
expect Λρ to be the leading driving term as it cannot be transformed away by a shift of frame of
reference (as can a constant driving term in the usual KPZ equation [7]). The coupled equations
we consider are then

∂t

(
ρ
u

)
+ ∂x

(
−Γρu
−Λρ

)
= 0. (22)

Recalling the elementary fact that a conservation law for a field ϕ in one dimension has the
form

∂tϕ+ ∂xJϕ = 0, (23)

we see that (22) has the the structure of a system of coupled conservation laws

∂t

(
ρ
u

)
+ ∂x

(
Jρ
Ju

)
= 0, (24)

where the inclusion current Jρ = −Γρu is proportional to the negative slope and the u current
Ju = −Λρ is proportional to minus the inclusion density.

3.1 Summary of solutions of Eq. (9)

In the remainder of the section we will solve Eq. (22) for some special initial conditions on the
infinite line—let us summarise here the two main cases. The first is a trough in the interface
with a uniform density of inclusions ρ(x, t = 0) = 1—we call it ‘giant trough’. The solution

9
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reads

(ρ, u) (x, t) =


(1,−1) , x/t < −

√
ΛΓ,(

1 +

√
Γ

Λ
, 0

)
, −
√

ΛΓ < x/t <
√

ΛΓ,

(1,+1) ,
√

ΛΓ < x/t,

(25)

and is shown in the left panel of Fig. 2 (initial condition dashed, solution solid). According

to Eq. (25), inclusions accumulate at the bottom of the trough (excess density
√

Γ
Λ) whilst

rendering the height profile flat. The second initial condition we consider is a peak uniformly
filled with inclusions, thus named ‘giant peak’, whose solution, in the simplifying case ρ(x, t =
0) = 3Γ/4Λ, is given by

(ρ, u) (x, t) =



(
3Γ
4Λ ,+1

)
, x/t < −3Γ

2 ,(
(x/t)2

3ΓΛ ,− 2
3Γ(x/t)

)
, −3Γ

2 <x/t < 0,

(0, 0) , x = 0,(
(x/t)2

3ΓΛ ,− 2
3Γ(x/t)

)
, 0 <x/t < 3Γ

2 ,(
3Γ
4Λ ,−1

)
, 3Γ

2 <x/t.

(26)

The solution (26) is illustrated in the right panel of Fig. 2 (initial condition dashed, solution
solid) and describes how the inclusions move away from the peak in the height profile which in
turn smoothens.

Although in both these initial conditions and solutions we have u ∼ O(1), in apparent
contradiction to the neglect of the u2 term, u can be made as small as required by rescaling
the parameters Γ and Λ. Our approximation then holds as long as u remains bounded at later
times, which is true for Eq. (25) and Eq. (26), and also for the more complex oscillatory solution
we build in section 4.

The remainder of the section has the following structure. First, we will review the method of
characteristics and how shock waves and rarefaction fans arise in one-dimensional conservation
laws. In section 3.3 we define the Riemann problem: solving a system of conservation laws
with a discontinuous initial condition. Having more than one conservation law complicates
the application of the methods of characteristics. We illustrate some of these complications by
considering a simpler model—the linearised active interface equations. Finally, in section 3.4 we
study the full inviscid active interface equations by combining concepts from the two previous
sections. We will specifically show that the two discontinuous initial conditions considered, the
giant trough and the giant peak, generate shock and rarefaction waves, respectively.

3.2 Method of characteristics for one-dimensional conservation laws

Conservation laws such as Eq. (23) are convenient mathematically as they can be solved system-
atically (at least to obtain an implicit solution) by applying a simple specialisation of the method
of characteristics which we now outline [18]. Specifically, conservation laws are quasi-linear
equations, i.e. linear in the highest-order derivatives present (here ∂tϕ and ∂xϕ), although the
coefficients may depend on the field ϕ and x, t. If, in conservation laws such as (23), Jϕ depends
only on the field ϕ, then the characteristic curves are simply straight lines x = J ′(ϕ)t+ const.
and the solution of the first order conservation law is constant along such lines. Then, the

10
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method of characteristics reduces to looking at the initial condition at t = 0 and propagating
it at further times on characteristic lines. However, inconsistencies may appear that prevent
regions of the (t, x) plane being filled with characteristics, as, for instance, when some of them
cross.

Generally, the crossing of characteristics implies the emergence of discontinuities. Such
discontinuities can propagate in time as shock waves, provided the conservation law is still
satisfied [18]. This forces the speed σ of the propagating discontinuity to satisfy the Rankine-
Hugoniot condition

J(ϕr)− J(ϕl) = σ(ϕr − ϕl), (27)

where ϕl and ϕr denote the field values on the left and right of the discontinuity, respectively.
Notice that propagating discontinuities only solve the original conservation law in the weak
sense. That is, they satisfy ∫ ∞

0
dt

∫ ∞
−∞

dx v [∂tϕ+ ∂xJφ] = 0 , (28)

for any smooth test function v(x, t) rather than the original equation Eq. (23). Therefore,
discontinuous solutions might be artefacts rather than actual solutions. One possible way of
identifying the physical solution is the entropy condition due to Lax[19],

J ′(ϕl) ≥ σ ≥ J ′(ϕr) (29)

where ϕl,r are the densities at the left and right of the shock respectively. Eq. (29), which can
be derived under the assumption of a vanishingly small viscous term (cf. Eq. (20)), has to be
satisfied by the candidate shock. If not, there will be a rarefaction wave (sometimes referred
to as rarefaction fan): rather than propagating, the discontinuity relaxes through a family of
diverging characteristics emanating from the discontinuity.

3.3 Riemann problem for coupled linear conservation laws

In this section we address the coupled equations, Eq. (22), and define the associated Riemann
problem. Let us call v the vector having ρ and u as components, and J(v) the corresponding
vectorial current. By defining a matrix A(v) such that Ai,j = ∂vjJi, Eq. (22) can be written as

∂tv + A · ∂xv = 0. (30)

Consider the discontinuous initial condition

v(x) =

{
vl, x < 0,

vr, x > 0.

The solution of a first order conservation law equipped with such a step-like initial datum is
called a Riemann problem [18]. We thus refer to our step-like initial condition as the (vl,vr)
Riemann problem, with the convention that vl is the vector of the system variables on the
discontinuity’s left and vr is the vector on the right.

To be specific, we will consider a system size-wide wedge-shaped trough in the interface
with a uniform inclusion density, i.e. ul = 1 = −ur and ρl = ρr = ρ0. We refer to this initial

11
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Figure 3: Solution of the Riemann problem associated with the linearised, inviscid active interface equations.
The initial condition is a uniform density (ρl = ρr = ρ0) wedge (ul = 1 = −ur, recall u is the interface slope).
As time progresses, inclusions accumulate at the bottom of the wedge and make it grow.

condition as the giant trough (see Figure 5). As an introductory example let us consider the
linearised version of Eq. (22)

∂t

(
ρ
u

)
+ ∂x

(
−Γ′u
−Λρ

)
= 0, (31)

where Γ′ = Γρ0 and ρ0 is the homogeneous density about which we have linearised the equations.
Eq. (31) would be relevant in the limit of high density where variations in density are relatively
small. For the linearised problem, we have

Alin =

(
0 −Γ′

−Λ 0

)
. (32)

Now call λi the i-th eigenvalue of Alin and li the corresponding left eigenvector (li ·Alin =
λiA

lin), and assume the eigenvalues to be labelled from the smaller to the larger. By multiplying
from the left Eq. (30) (and the initial condition) with the left eigenvector, the two-dimensional
system decomposes into two independent ones{

∂tei + λi∂xei = 0,

ei(x, 0) = e0
i (x),

(33)

where the ei’s are the system eigenmodes li · v. The system of equations (33) has solutions
ei(x, t) = e0

i (x − λit), which can be composed with Alin right eigenvectors to yield ρ(x, t) and
u(x, t). To sum up, the Riemann problem is simply solved by projecting the initial discontinuity
onto the system left eigenvectors, transporting the projections along x = λit and gluing them
together again with the right eigenvectors. The solution for the giant trough initial condition
reads

v(x, t) =


vl, x < λ1t,

vl + [l1 · (vr − vl)] r2, λ1t < x < λ2t,

vl +
∑
i=1,2

[li · (vr − vl)] ri ≡ vr, λ2t < x ,

and is shown in Fig. 3 on the (t, x) plane. The fully nonlinear equations will be considered in
the next section.

12
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3.4 Riemann problem for the nonlinear active interface equations

We have learnt in the previous section that the eigenspaces of of A play a prominent role in the
solution of the linearised Riemann problem. This also holds in the nonlinear active interface
equations, for which

A(u) =

(
−Γu −Γρ
−Λ 0

)
. (34)

The eigenvalues are given by (in increasing order)

λ1/2 = −Γu/2∓
√

Γ2u2/4 + ΛΓρ, (35)

and are, of course, functions of ρ and u, as are the eigenvectors. They are also distinct as long
as u and ρ are not vanishing simultaneously, so that the matrix is strictly hyperbolic for ρ > 0.
Hyperbolicity, which guarantees that the eigenvectors form a basis of the v-space, is a crucial
property. It allows us, by decomposing the initial discontinuity of the Riemann problem in
the eigenvector basis, to decompose the problem itself into two simpler ones, in analogy with
Eq. (33).

Due to the eigenvectors dependence on ρ and u, however, the basis is only local, so that
a generic Riemann problem with arbitrarily far left and right states cannot be decomposed
along the system eigenvectors. We will see how to circumvent this problem via the definition
of shock and rarefaction curves, which cover the whole ρ, u plane (or, at least, its physical
section). First, we will consider the example of the giant trough initial condition, and learn
how to solve the corresponding Riemann problem by combining two shock waves. Analogously,
in the next subsection, we will study rarefaction fans via the giant peak initial condition. The
last subsection deals with the special case of linear degeneracy, occurring when the inclusion
density ρ vanishes.

3.4.1 Shock waves in the giant trough

The discontinuous initial condition of the Riemann problem can evolve into a either rarefaction
fan or a shock wave, or possibly into a superposition of the two. The Rankine-Hugoniot condition
Eq. (27) for the shock speed carries over to the multi-dimensional case, where it reads

J(vr)− J(vl) = σ (vr − vl) . (36)

The perspective taken in the multidimensional Riemann problem is, however, opposite to that
adopted in the scalar case. Rather than computing the speed a posteriori given vl and vr, we
shall fix vl and use Eq. (36) as the definition of a curve in the v-plane. By plugging J1 = −Γρu
(ρ component) and J2 = −Λρ (u component, cf. Eq. 22) into Eq. (36) one gets

σ(ρ− ρl) = −Γ(ρu− ρlul),
σ(u− ul) = −Λ(ρ− ρr),

where, to stress that only the left state ul = (ρl, ul) is fixed, we have omitted the subscript from
the right state. Once σ is eliminated from the equations, there remains a quadratic equation
for ρ as a function of u (or viceversa) and ul. The two solutions for ρ are

ρ1(u;vl) = ρl +
u− ul

Λ

[
Γu/2 +

√
Γ2u2/4 + ΓΛρl

]
,

ρ2(u;vl) = ρl +
u− ul

Λ

[
Γu/2−

√
Γ2u2/4 + ΓΛρl

]
.

(37)
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Figure 4: Shock curves of the active interface equations for several left states vl (see discussion in the text).
vs
1 (vs

2) denotes the graph of the function ρ1(u) (ρ2(u)), i.e the first (second) shock curve. The grey dashed lines
mark the portion of the curves discarded due to not satisfying the Lax entropy condition. The arrows represent
the A matrix right eigenvectors, and point towards the direction of increasing eigenvalue.

The graphs of ρ1(u) and ρ2(u), shown in Fig. 4, are the aforementioned curves—they are called
shock curves. Let us call them vs1/2 and parametrise them with u e.g., vs1(u;vl) has components

(ρ1(u;vl), u).
By construction, the (vl,v

s
i (u,vl)) Riemann problem is solved by a propagating disconti-

nuity, or a shock. The shock speed σi(u;vl) comes from the Rankine-Hugoniot condition, i.e.

σ1(u;vl) =− Γu/2−
√

Γ2u2/4 + ΛΓρl,

σ2(u;vl) =− Γu/2 +
√

Γ2u2/4 + ΛΓρl.
(38)

By performing a ρ, u → ρl, ul limit of Eq. (36–38), it can be shown that the i-th shock curve
tangent tends to the i-th eigenvector of A(vl) (see Fig. 4), whereas σi tends to the corresponding
eigenvalue. Since the eigenvalues play the role of characteristic slopes, it is natural to extend
the Lax condition Eq. (29) as [19]

λi(vl) ≥ σi(u;vl) ≥ λi(vsi (u,vl)). (39)

In order to meet these Lax conditions with shock speeds Eq. (38), the portion of the shock
curves with u < ul must be discarded. In other words, a shock develops only if the interface
slope is higher on the right than on the left.

We are now able to compute the evolution of the giant trough initial condition (see Fig. 5),
which we already used for the linearised equations, for the inviscid active interface equations.
The solution amounts to combining two shock waves travelling in opposite directions. In the
Riemann problem language, the initial condition is ul = −1, ρl = ρ0 and ρr = ρl = ρ0 but
ur = +1, so that ur > ul. As shown in Fig. 6 left panel, vr is neither on vs1 nor vs2. We will
then proceed by decomposing vr − vl along the system right eigenvectors. The only difference
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Figure 5: The giant trough initial condition in the height variable (left panel) becomes a step in the slope
variable (right panel).

Figure 6: Schematic representation of the giant trough Riemann problem in the v-plane. The relevant part of
the shock curves are shown as solid lines. The intermediate state must be reached via the curve vs

1, as shown in
the right panel, so that the two waves the full solution will consist of do not collide.

with the linear case is that the eigenvectors depend on v, thus we will not connect vr to vl
with two straight lines but with two curves—the shock curves. Specifically, we will move along
vs1(u;vl), until we hit the point at which vm = (ρ1(um;vl), um) such that vr lie on the second
shock curve emanating from vm, i.e. vs2(ur;vm) = vr (see Fig. 6 right panel). The equation
for the intermediate state vm, is

vs2(ur;v
s
1(um;vl)) = vr ⇒ ρ2(ur;vm) = ρr

and it is solved by

um = 0, ρm = ρ1(0;vl) = ρ0 +

√
ρ0

Γ

Λ
.
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Figure 7: Evolution of the giant trough initial condition in the height variable. The density profile is a top hat
function which extends with the shock speeds. The increased density signals an accumulation of inclusions at
the center of the valley, which, consequently, gets filled.

The giant trough Riemann problem solution follows by gluing the two shock waves together,

(ρ, u) (x, t) =


(ρ0,−1) , x/t < −

√
ΛΓρ0,(

ρ0 +

√
Γ

Λ
ρ0, 0

)
, −

√
ΛΓρ0 < x/t <

√
ΛΓρ0,

(ρ0,+1) ,
√

ΛΓρ0 < x/t,

(40)

where − and +
√

ΛΓρ0 come from σ1(um;vl) and σ2(ur;vm), respectively. Using the first shock
curve (vs1) to find the intermediate state and the second (vs2) to reach vr from there guarantees
that, as σ1 < σ2, the two shock waves do not collide.

The solution for the giant trough problem is shown in the height variable in Fig. 7. To
summarise, two shock waves emanate from the apex of the trough. These shock waves delineate
a region in which the inclusion density has a top hat profile, indicating an excess inclusion
density at the bottom of the trough. The excess density fills the trough by increasing the height
between the shock fronts. Having learnt how an initial trough generates an inclusion cluster
that eventually fills it, it is natural to ask what happens if the initial trough is replaced by a
peak.

3.4.2 Rarefaction fans on the giant peak

When ur < ul the Lax condition is not satisfied. As for the single conservation law, a step-
like initial condition will smooth out as a rarefaction fan, rather than propagating as a shock
wave. This can be checked by plugging into Eq. (22) the functional form of a rarefaction fan
v(x, t) = w(x/t). The equation becomes

[A(w(ξ))− ξI] ·w′(ξ) = 0, (41)

in the variable ξ = x/t (the prime denotes derivative w.r.t. ξ). According to Eq. (41), w′ is the
right eigenvector of A(w) associated with the eigenvalue ξ, or, compactly,{

v′(ξ) = ri(v(ξ)),

λi(v(ξ)) = ξ.
(42)

λi(w(ξ)) = ξ is, in fact, a condition on the ith eigenvector normalisation. Differentiation of
both sides w.r.t. ξ yields (∇vλi) · ri = 1. The latter condition can be met by appropriate

16



Scaling limits of the active interface equations

Figure 8: Rarefaction curves of the active interface equations for several left states vl (see discussion in the
text). vr

1 (vr
2) denotes the first (second) rarefaction curve. The grey dashed lines mark the portion of the curves

discarded due to the increasing eigenvalue constraint. The arrows represent the A matrix right eigenvectors, and
point towards the direction of increasing eigenvalue.

normalisation of the eigenvectors, provided

(∇vλi) · ri 6= 0. (43)

The above inequality is called the genuine nonlinearity condition, and we will assume it to hold.
Violations will be considered in subsection 3.4.3.

The normalised right eigenvectors of the matrix (Eq. 34) are

r1 =

−
√

Γ2u2/4+ΛΓρ

ΛΓ√
Γ2u2/4+ΛΓρ

Γλ1

 , r2 =


√

Γ2u2/4+ΛΓρ

ΛΓ

−
√

Γ2u2/4+ΛΓρ

Γλ2

 . (44)

Each will give rise to an equation such as Eq. (42). In order to find the appropriate boundary
conditions, we resort to the same approach as the previous subsection: let us fix vl (the left
initial vector of the Riemann problem) and use Eq. (42) to find two more curves in the v-plane
which are the rarefaction curves. As with the shock curves, we desire that they emanate from
vl, hence we will use the latter as initial condition of Eq. (42). The two solutions—let us call
them vr1 and vr2—are (

ρr1(ξ;vl)

ur1(ξ;vl)

)
=

 ξ2

3ΓΛ −
√
ξξ1,l
Λ

[
ul +

2ξ1,l
3Γ

]
√

ξ1,l
ξ

[
ul +

2ξ1,l
3Γ

]
− 2ξ

3Γ

 , (45)

and (
ρr2(ξ;vl)

ur2(ξ;vl)

)
=

 ξ2

3ΓΛ +

√
ξ2,lξ

Λ

[
ul +

2ξ2,l
3Γ

]
√

ξ2,l
ξ

[
ul +

2ξ2,l
3Γ

]
− 2ξ

3Γ

 . (46)
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Figure 9: Giant peak initial condition in the slope and height variable (on the left) and corresponding con-
struction of the solution in the v-plane (on the right). With respect to the giant trough of Fig. 7, the solution
will be a double rarefaction fan, with an intermediate density lower rather than higher than the initial one.

For both i = 1 and 2, ξi,l is such that vri (ξi,l;vl) = vl. In agreement with (∇vλi) · ri = 1, only
the portion of the rarefaction curve along which the corresponding eigenvalue increases shall
be retained. As, always due to (∇vλi) · ri = 1, ξi,l = λi(vl), the eigenvalue increases in the
direction of increasing ξ. Hence uri ≤ ul, i.e. the rarefaction curves extend in the direction of
decreasing u or, in other terms, an initial discontinuity consisting of a drop in the value of u
will give rise to a rarefaction fan.

The active interface equations rarefaction curves are shown in Fig. 8. By construction, the
(vl,v

r
i (ξ,vl)) Riemann problem is solved by a rarefaction fan, whose shape also depends on

vri (ξ;vl):

v(x, t) =


vl, x/t < ξi,l ≡ λi(ul)
vri (x/t), x/t ∈ [ξi,l, ξ] ≡ [λi(vl), ξ]

vri (ξ;vl), x/t > ξ.

We are now in a position to solve the giant peak Riemann problem ul = 1, ur = 1, ρr = ρl−ρ0

(see Fig. 9) for the inviscid active interface equations. The solution amounts to combining two
rarefaction waves travelling in opposite directions. The procedure is analogous to that used for
shock waves, hence we will not explain it in detail. The solution reads

(ρ, u) (x, t) =



(ρ0,+1) , x/t < λ1(ρ0,+1),

(ρr1(x/t), ur1(x/t)) , λ1(ρ0,+1) <x/t < λ1(ρ1(ξ̄), 0),(
ρ1(ξ̄), 0

)
, λ1(ρr1(ξ̄), 0) <x/t < λ2(ρr1(ξ̄), 0),

(ρr2(x/t), ur2(x/t)) , λ2(ρr1(ξ̄), 0) <x/t < λ2(ρ0,−1),

(ρ0,−1) , λ2(ρ0,−1) <x/t,

(47)

where ξ̄ is such that vr1(ξ̄) = vm and is found by solving

vr = vr2(λ2(ρr, ur);v
r
1(ξ̄;vl)).
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Figure 10: Schematic construction of the solution shown in Eq. (48). On the ρ = 0 line the system becomes
linearly degenerate. As a result, the shock curve collapse onto a horizontal, straight line and can be extended
for u smaller than the starting point (see discussion in the text). To reach the right state vr, then, one can use
the red horizontal line shown in the figure to move along the u-axis, down to that point that can be connected
directly to vr via a rarefaction curve.

The solution for the giant peak initial condition is shown in Fig. (11), left panel: it consists
of two rarefaction waves emanating from the apex of the peak. In propagating, these rarefaction
waves leave behind a region where the density is reduced (see the flat-bottomed trough profile
in the left panel of the figure) and the height profile is smoothened (the flat solid line in the
figure replaces the sharp, dashed wedge). There is, however, a complication that arises when
the inclusion density at the bottom of the trough is reduced to zero (Fig. (11) right panel). The
density must be physically greater than zero: mathematically, we require ρr1 to be positive to
satisfy the genuine nonlinearity condition Eq (43). Due to the functional form of ρr1(ξ;ul), the
condition translates into

ul +
2λ1(ρl, ul)

3Γ
< 0⇔ ρl > ρc ≡

3Γ

4Λ
u2
l .

As long as ρl > ρc the giant peak Riemann problem is solved as above by Eq. (47). However,
the case ρl ≤ ρc requires the additional concept of linear degeneracy, which we consider in the
next subsection.

3.4.3 Linear degeneracy at vanishing density

Consider the giant peak initial condition with ρl < ρc (see Figure 11). When leaving vl along
the first rarefaction curve, there is a ξ̃ such that ρr1(ξ̃;vl) = 0 and ur1(ξ̃;vl) = ũ > 0 (cf. Fig. 10).
As ρ = 0, both λ2 and (∇vλ2) · r2 vanish. The genuine nonlinearity (43), then, ceases to hold,
and the corresponding rarefaction curve (vr2 in this case) is not defined anymore. In such cases
the pair λ2, r2 is said to be linearly degenerate. The reason is that λ2 is constant along the
direction of r2, so that along this direction the conservation laws are effectively linear. The
solution of the problem then reduces to a simple transport wave.

This can be shown by considering the second shock curve. When emanating from a point
on the positive u axis this curve coincides with the horizontal line ρ = 0 (cf. ρ2(u;vl)|ρl=0 from
Eq. (37)), and the shock speed σ2(u,vl) vanishes. As the second eigenvalue λ2 vanish too, the
Lax condition Eq. (39) is identically satisfied. Thus, the transport wave with vanishing speed is
the physical solution. For u < 0 the pair λ2, r2 meets again the genuine nonlinearity condition,
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Figure 11: Solution of the giant peak Riemann problem in the height-density variables (dashed lines represent
the initial condition). ρ0 > ρc in the left panel (Eq. (47)), but not in the right one (Eq. (48)). In the right panel,
the initial inclusion density is so low that the advection due to the slope completely depletes the peak. Once left
with no inclusions, the smoothening of the peak ends.

but the pair λ1, r1 does not. By repeating the argument used for positive u, u = 0 can be
connected with u = −ũ via the first shock curve v1 emanating from the v-plane origin (see
again Fig. (10)). As σ1(u;vl) vanishes on the half-line ρ = 0, u < 0, there is no inconsistency
in moving first along the second shock curve and along the first shock curve later—they are
both associated with a static discontinuity. A static discontinuity between u = ũ, ρ = 0 and
u = −ũ, ρ = 0 is also physically reasonable, as the interface is static where there are no
inclusions.

Therefore, the solution for the case ρ0 < ρc, where the Riemann problem generates a van-
ishing inclusion density, is given by

(ρ, u) (x, t) =



(ρ0,+1) , x/t < λ1(ρ0,+1),

(ρ1(x/t), u1(x/t)) , λ1(ρ0,+1) <x/t < λ1(0, u1(ξ̂)),(
0, u1(ξ̂)

)
, λ1(0, u1(ξ̂)) <x/t < 0,(

0,−u1(ξ̂)
)
, 0 <x/t < λ2(0,−u1(ξ̂)),

(ρ2(x/t), u2(x/t)) , λ2(0,−u1(ξ̂)) <x/t < λ2(ρ0,−1),

(ρ0,−1) , λ2(ρ0,−1) <x/t.

(48)

Having studied the two model Riemann problems of the giant trough and the giant peak, we are
finally in the position of enforcing periodic boundary conditions on the inviscid active interface
equations, and build a solution that takes the system finiteness into account. This will be the
topic of section 4.

4 Oscillating dynamics with periodic boundaries

In section 3 we have assumed the system to be infinite. We now consider periodic boundary
conditions with an initial condition that, due to periodicity, is a combination of the giant peak
and the giant trough considered in the previous section (see Fig. 12). The dynamics is most
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Figure 12: Interface (blue) and density (orange) profiles at the time of the first waves collision τ . The profiles
come from Eq.(40) and (47-48). The initial condition is also shown with dashed lines. Two vertical, gray, dot-
dashed lines mark the position of the discontinuities in the initial condition, while two red ones highlights the
location of the discontinuities at time τ .

easily visualised by a numerical solution of the inviscid equations. The solution, obtained by a
discretisation of time and space, is shown in Fig. 13 and we shall refer to this in the following
discussion.

Initially, the analytical solutions (40) and (47-48) are still valid. The inclusions move away
the peak, which smoothens as a rarefaction wave, while accumulating at the trough. At the
same time, the height at the bottom of the trough rises due to the increased inclusion density,
while the peak flattens. The result of this dynamics is depicted in Fig. 12. We placed the
initial condition’s discontinuities at x = l/4 and 3l/4, where l is the system size (see the vertical
gray, dot-dashed lines in the figure). After some time t, they are located at (by recalling the
shock speeds) xt,1 = l/4 +

√
ΓΛρ0t, xt,2 = l/4 −

√
ΓΛρ0t, i.e. close to 0 and l/2. The physical

interpretation of the top hat density profile is that an inclusion aggregate forms at the trough
position and spreads laterally with speed ±

√
ΓΛρ0 (cf. Eq. (40)). The excess density of the

aggregate is
√
ρ0Γ/Λ. As we have shown in [10], these values fit well with the inclusion clusters

size and speed measured in the microscopic, stochastic model.
As the trough triggers the two shock waves, the peak triggers two rarefaction waves, which

travel at speed ±
(

Γ/2 +
√

Γ2/4 + ΛΓρ0

)
towards the shocks fronts. The meeting of shocks

and rarefaction waves occurs at time

τ =
l

2
(

Γ/2 +
√

Γ2/4 + ΛΓρ0 +
√

ΛΓρ0

) . (49)

The system state at the meeting time is shown in the Fig. 12 and also presented in panel A of
Fig. 13. Panel B, instead, shows the height and density profiles right after the meeting time.
Notice how the shock fronts are still propagating away from the high-density region, but now
the density at the front is lower than that in the middle. The profiles connecting the bulk of
the high density-region with the shock fronts are remnants of the rarefaction fans, which are
now split in half by the shocks. Notice, also, how the interface is forming a peak in the high-
density region, to replace the trough of the initial condition. Although the new discontinuities
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(highlighted in the figure by vertical red lines) do not strictly constitute a Riemann problem as
the values of ρ and u on their sides are not constant, they can nevertheless give us some insight
on the system behaviour for t > τ .

Specifically, we will proceed as if we were solving two new Riemann problems with

vl = v(x−τ,1, τ), vr = v(x+
τ,1, τ),

and the same for the discontinuity at xτ,2. For the first discontinuity, for instance, the values
on the left are ul = −1 and ρl = ρ0, as in the giant trough of the last section. The shock
and rarefaction curves emanating from such vl are shown in Fig. 6. The values on the right
are u = 0, ρ = ρ0 +

√
ρ0Γ/Λ—nothing but the intermediate state vm of Fig. 6, right panel.

The shock is then initially preserved, and also its speed remains the same: −
√

ΓΛρ0. As it
progresses, however, the left state changes, with ρ decreasing and u shifting towards zero. With
respect to Fig. 6, the point vl moves towards the origin of the axes. Specifically, it does so
by following the orange segment with an arrow of the left panel of Fig. 9, that is the second
rarefaction curve (recall this is how we have determined the rarefaction fan profile). As soon as
vl moves down, it cannot be connected to u = 0, ρ = ρ0 +

√
ρ0Γ/Λ with a single shock curve

anymore. A rarefaction curve can be used to bridge the gap. This rarefaction curve needs to
be that associated with the second eigenspace, as the shock curve is that associated with the
first, and it gives rise to the rarefaction fan connecting the high density region in the middle
of panel B with the shock front. Putting the theory aside for a moment, it is as if the shock
wave and the front of the rarefaction fan pass through each other. In doing so, the rarefaction
fan acquires the discontinuity of the shock, while the shock lowers its speed due to the lower
density found after the rarefaction fan.

Thus, after passing through the front of the rarefaction wave, the shock keeps propagating
albeit with a slightly different speed, until it meets the tail of the rarefaction wave, which

travels at speed +
√

ΓΛρr1(ξ̄) (cf. Eq. (47)). The snapshot shown in panel C is taken at the time

when the shocks meet the tails of the original rarefaction waves. Here the density depletion
has progressed—at the front, particularly, the density is the same as the initial condition—and
the height peak at l/4 is even more pronounced. This collision can be understood again in
terms of a new Riemann problem, this time with initial discontinuity vl = (0, ρr1(ξ̄) < 0) and
vr = (+1, ρ0). The result is again a combination of a shock and a rarefaction wave, with the
shock that will now fill the low-density region while forming a new trough at 3l/4 (notice the
initial condition had a peak here), while the rarefaction wave will keep decreasing the density
and building the peak at l/4. Though we described the waves close to x = 0, the phenomenology
is the same at x = l/2: it suffices to swap left and right states and change the sign of the wave
speeds.

Thus, there are now two shocks travelling towards each other, as are the two rarefaction
waves. The two collisions will take place at x = 3l/4 and l/4, for shocks and rarefaction fans,
respectively (see panel D of Fig. 13). The system now looks like a flipped version of the one
we started with, with the density returning to a uniform value ρ0, but the interface peak at l/4
and the trough at 3l/4. Notice, however, the new peak is not as sharp as that of the initial
condition and that ρ has not quite attained the value ρ0 everywhere. The reason is that, in the
numerical solution, we have added a small viscous term (as small as the lattice spacing of the
spatial discretisation). This small viscous term will cause dissipation and at every iteration of
the dynamics just described the interface is slightly flatter than before—it will, ultimately, be
flat.
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Figure 13: Snapshot of the density (orange) and height (blue) profiles at several times, all greater than or equal
to the time of the first collision τ . Snapshot A is taken exactly at time τ at which the shocks emanating from
thr trough and rarefaction fans emanating from the peak meet. Snapshot B shows the system state after the
shocks have passed through the front of the rarefaction waves: the density in the middle decreases and the new
peak starts to form. Snapshot C is taken when the shocks meet the tail of the original rarefaction curves. The
dynamics, with respect to shorter times t < τ , is reversed: a new peak, located at l/4 is formed with a rarefaction
wave, while a shock wave generates a trough at 3l/4. Lastly, panel D shows a snapshot right before all the waves
have travelled the whole system size. The density goes back to uniform, but the peak and the trough of the
initial condition have been swapped. From this state, the whole cycle starts again.

In fact, this dissipation affects the analytical solutions too, where the vanishingly small
viscous terms enter through the Lax condition. To summarise, the giant trough and giant peak
initial conditions, combined on a periodic system, cause an oscillatory behaviour. In the cycle,
illustrated in Fig. 13, the peak and trough reform at diametrically opposite positions, via a
pair of shock waves and rarefaction fans travelling around the system and passing through each
other. Eventually, dissipation kicks in, the waves running through the system decay diffusively,
so that the density becomes uniform and the interface flat. The addition of noise could prevent
this trivial outcome: by creating random kinks in the interface and displacing the inclusions, it
will generate small peaks and troughs and density inhomogeneities that give rise to new waves
even after dissipation has completely smoothened the initial condition.

5 Discussion and conclusions

In this paper we have solved the inviscid limit of the active interface equations and explained the
active interface behaviour at the Euler scale by considering a combination of discontinuous initial
conditions. Extreme interface profiles such as the giant trough and the giant peak considered in
sections 3.4.1 and 3.4.1 are used in kinetic roughening problems to probe the system relaxational
dynamics [7]: we found that the giant trough relaxes via two shock waves emanating from its
apex (see Fig. 7), while the peak decays by forming two rarefaction fans (see Fig. 11). It is
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worth remarking here that the physical limit of zero density enters the picture as the special
mathematical case of linear degeneracy. Interestingly, while the height profile relaxes the initially
homogeneous density profile changes, by developing a top hat profile on the trough and a flat-
bottomed trough on the peak, as inclusions move away from the latter to accumulate at the
former. As a result, when the waves originated from the trough and the peak meet, the interface
profile is (almost) continuous and flat while the density has a jump discontinuity.

Another suitable Riemann problem shows that this new state also generates two shock
waves and two rarefaction fans: ultimately, it is as though the two sets of waves have never
met and have simply passed through each other. An interesting application of this scenario
is to the periodic system considered in section 4. As the corresponding shock and rarefaction
waves propagate around the system and pass through each other, the system itself exhibits
an oscillatory behaviour illustrated in Fig. 13. This, we argue, is the dynamical origin of the
oscillations observed in [10]. Apart from yielding the scaling of the oscillation period, the
inclusion aggregate’s typical size and the wave speed, our calculations also confirm that the
oscillatory behaviour of the active interface is not a simple transient. On the one hand, as the
oscillation period scales with the system size, we can regard the oscillations as the characteristic
behaviour at the Euler scale (dynamic exponent z = 1). On the other hand, due to the small
viscous terms in the equations, dissipation eventually dominates the dynamics leading to a
stable steady state and dynamic exponent z = 2. Let us remark that this holds true for
the simplified active interface equations with no KPZ nonlinearity (∇h)2 1. If this term is
included, KPZ modes should appear [20] in the height dynamics and possibly influence the
inclusion dynamics too. We also note that in other studies of models comprising two driven
conserved densities, one generally expects the two conserved quantities to be characterised by
two dynamical exponents [20].

The major question arising from our picture concerns the role of the noise in the system.
As we have already mentioned at the end of section 4, the presence of noise in Eq. (1) might
act as the seed of a non-trivial dynamics, even after the density and interfacial slope profiles
have relaxed towards the homogeneous state. In fact, the oscillatory behaviour we observed
in [10] at the microscopic model level was attained by starting from a flat interface and ho-
mogeneous density initial condition, and was therefore entirely generated by the noise. Hence,
we speculate that noise is fundamental in keeping the z = 1 behaviour of the system alive
even after the effects of the initial conditions are no longer significant. It would, of course, be of
great interest to study stochasticity in a systematic way, in order to better understand its effects.
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