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Lead (Pb) exposure is associated with adverse health effects in both humans and wildlife.

Blood lead levels (BLL) of sentinel wildlife species can be used to monitor environmental

lead exposure and ecosystem health. BLL analyzers, such as the LeadCare®, are

validated for use in humans, assessed for use in some avian species and cattle, and are

increasingly being used on wildlife to monitor lead exposure. The LeadCare® analyzers

use a technique called anodic stripping voltammetry (ASV). Species-specific conversion

equations have been proposed to approximate the levels found with gold standard

measuring methods such as inductively coupled plasma mass spectrometry (ICP-MS)

because the ASV method has been shown to underestimate BLL in some species. In

this study we assessed the LeadCare® Plus (LCP) for use on Scandinavian brown bears

(Ursus arctos). LCP measurements were correlated with ICP-MS with a Bland-Altman

analyzed bias of 16.3–22.5%, showing a consistent overestimation of BLL analyzed with

LCP. Based on this analysis we provide conversion equations for calculating ICP-MS

BLL based on the LCP results in Scandinavian brown bears. Our study shows that

the LeadCare® Plus can be used for monitoring of lead exposure by approximating

gold standard levels using conversion equations. This enables comparison with other

gold standard measured BLL within the observed range of this study (38.20–174.00

µg/L). Our study also found that Scandinavian brown bears are highly exposed to

environmental lead.

Keywords: blood lead, lead exposure, Ursus, anodic stripping voltammetry, Pb

INTRODUCTION

Environmental contamination with and subsequent exposure to lead (Pb) impacts both humans
and animals living in a polluted ecosystem. In humans lead has been associated with a wide range
of harmful health effects, including reduced IQ (1) and cardiovascular disease (2, 3). The World
Health Organization states that there are no safe levels of lead in the body (4) and even low
level exposure poses a health risk, especially during developing stages (5). Although the harmful
effects of lead exposure in humans are well-documented, these results have yet to be applied in
legislation and regulation on all areas of lead usage, e.g., lead-based ammunition for hunting.
The European Food Safety Authority (EFSA) has set the blood lead level (BLL) of concern for
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developmental neurotoxicity in humans to 12 µg/L (6). The level
of concern of the American Centers for Disease Control and
Prevention (CDC), now termed the “reference level” under the
current US administration, is 50 µg/L (7, 8).

Lead is absorbed through ingestion and inhalation (9), with
higher absorption from the gastrointestinal tract in children than
in adults (10). Lead can be measured in the blood (11). Lead
compounds are inorganic, organic or ionic, where organic lead
can be metabolized to inorganic and ionic lead (12). Ionic lead
exerts similar toxicities as inorganic lead. As a bio accumulative
toxicant, 94% of the lead body burden is stored in bone (13). The
half-life for inorganic lead is 30 days in blood and 10–30 years in
bone (6, 10). The half-life seems to be positively correlated to the
length of exposure (14) and varies with age and sex (15).

Lead follows a three-compartment distribution model
between blood, soft tissue and bone (11). Lead is excreted via
urine and feces as well as in hair, sweat and nails (11). BLL can
be used to measure recent exposure, but bone-stored lead can be
reabsorbed and become an endogenous source of lead, keeping
the blood level elevated. Increased calcium mobilization through
bone resorption and concurrent reabsorption of lead to the
blood is seen during pregnancy and lactation in humans (16),
with highest mobilization of bone stored lead in the postpartum
period (17). This causes prenatal and neonatal exposure through
the placenta (18) and nursing in humans (19) and mice (20). The
lactose content of the milk promotes calcium absorption in the
gut, and thereby also increases lead absorption (21).

The gold standard of lead analysis in blood or tissue is
generally accepted to be graphite-furnace atomic absorption
spectrometry (GFAAS) or inductively coupled plasma mass
spectrometry (ICP-MS) (22). ICP-MS and GFAAS has been
determined to be statistically equivalent when measuring BLLs
for clinical use and biomonitoring (23, 24). Both methods
are expensive and time-consuming and require laboratory
involvement. An alternative analytical method that both
simplifies the process and lowers the cost of determining BLL
has been introduced: Anodic stripping voltammetry (ASV) is a
relatively new method that uses electrochemistry to measure lead
in blood (25).

The LeadCare R© analyzers from Magellan Diagnostics Inc.
(North Billerica, MA, USA) apply ASV technology. These
analyzers are validated for humans (26), some avian species
(27, 28) and in cattle (29) by comparison to the GFAAS
and/or ICP-MS. Furthermore, ASV has been used in studies
investigating lead exposure in grizzly bears (Ursus arctos), black
bears (U. americanus), gray wolves (Canis lupus) and cougars
(Puma concolor) (30), and multiple avian species (31, 32). The
analyzers are portable and require little training to operate. This is
beneficial in wildlife research and biomonitoring of lead exposure
in the field.

In studies comparing the LeadCare R© systems with GFAAS
or ICP-MS, the ASV analyzers had a negative bias (i.e.,
underestimation) when measuring the BLL of avian wildlife (27,
33) and cattle (29). Validation for each species has been proposed
to verify the conversion rate when using the LeadCare R© to
monitor exposure (23). No significant difference was found
between the different LeadCare R© systems in birds (23). In

the present study, the LeadCare R© Plus (LCP) was used as
it has the lowest detection range of the currently available
LeadCare R© analyzers.

The objective of this study was to compare LCP and ICP-MS
for measurement of BLL in Scandinavian brown bears. Based
on previous studies on hunting with lead-based ammunition in
Scandinavia (34), the scavenging behavior of Scandinavian brown
bears (35) and assessment of the LeadCare R© system in other
species, we predicted (1) to find detectable levels of lead in blood
of some bears and (2) to find that LCPwas negatively biased when
compared to ICP-MS.

METHODS AND MATERIALS

The present study was conducted in Dalarna and Gävleborg
counties in south-central Sweden (61◦N 15◦E) and Hedmark
County in south-eastern Norway (61◦N 18◦E) as part of the
Scandinavian Brown Bear Research Project (36). Captures,
handling and sampling of bears were approved by the
Swedish Ethical Committee on Animal Research (Uppsala,
Sweden; #C18/15), the Swedish Environmental Protection
Agency (Stockholm, Sweden; NV-0758-14), and the Swedish
Board of Agriculture (#31-11102/12) and were carried out
according to an established protocol (37).

Blood was collected from the jugular vein in 4ml EDTA tubes
using the Vacuette R© system (Greiner Bio-One, Kremsmünster,
Austria) from 54 bears captured during April-May 2018. The
blood samples were analyzed on the LCP according to the
protocol for the analyzer, either within 6 h of sampling, or after
refrigeration at 4◦C for up to 72 h. In addition, 70 frozen samples
stored at −20◦C for 1 to 8 years (2010: N = 11, 2013: N = 23,
2017: N = 36) were analyzed. The frozen samples were thawed
at room temperature and inverted to homogenize the content
before being tested on the LCP with the same method as the fresh
blood samples.

Fifty microliter whole blood was transferred using a calibrated
autopipette (Eppendorf Research R© 10–100 µL, pipette tips 10–
100µL, Eppendorf, Hamburg, Germany) into a test vial provided
in the test kit for the analyzer. Test vials contain hydrochloric
acid solution that breaks down the red blood cells. The vial
was inverted 8–10 times, then stored out of sunlight at room
temperature for 24 h. After 24 h, the test vial was inverted 8–
10 times and 30 µL was transferred with the autopipette to the
test strip of the analyzer. The analysis took 3min and the result
was provided in µg/dL. The analyzer does not have memory,
so the result was written down before the used sample strip
was removed.

For each day of analysis with the LCP a quality control set
from the test kit was analyzed. All quality controls analyzed
during this study were within the control range given for the
respective test kits used.

After analysis on the LCP, the samples were stored at
−20◦C in the collection tubes. The samples were then sent for
analysis at ALS Scandinavia AB (Luleå, Sweden) to determine
the BLL with ICP-MS. The freezing chain was not further
interrupted. The samples were thawed, inverted for several
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minutes, and an aliquot of whole blood was digested with
concentrated nitric acid (closed vessel, MW-assisted digestion
using Mars5 laboratory digestion system from CEM) followed
by dilution with distilled, de-ionized water. Diluted digests were
analyzed by ICP-SFMS (ELEMENT2, ThermoScientific, Bremen,
Germany), using combination of internal standardization and
external calibration. Details on preparation method, measuring
parameters and operation conditions can be found elsewhere
(38, 39). Method blanks prepared and analyzed alongside with
blood samples contain <0.5 µg/L Pb. Accuracy of the method
in Pb concentration range 10–460 µg/L was controlled using
referencematerials from Sero AS (Oslo, Norway, SeronormTrace
elements in HumanWhole Blood, Lot 1702826A, L1, L2, and L3)
reconstituted according to the manufacturer’s instructions.

Statistical Method
All statistical analyses were carried out with R (40). Linear
regression modeling was used to assess the agreement between
the LCP and the ICP-MS concentrations. BLLICP−MS was
modeled as response with BLLLCP as explanatory variable.
Regression coefficients of themodel outputs were used to develop
conversion equations. The LCP and the ICP-MS BLLs were log
transformed to improve normality of error and distribution.

The BLLs were analyzed both pooled and separated into fresh
and frozen. One sample was excluded as an extreme outlier with
BLLLCP > 650 µg/L (over detection limit of the analyzer) and
BLLICP−MS = 174 µg/L. The final sample size was n = 124 with
54 fresh and 70 frozen samples. The LCP concentration in µg/dL
was converted to µg/L. As quantity of frozen samples from each
sample year was not enough to analyse each year statistically, all
frozen samples were analyzed as one category.

Previous wildlife studies have identified a bias of the ASV
method, so Bland-Altman method comparison analysis (41)
using R package blandr (42) was used to determine a potential
bias on BLL of Scandinavian brown bears between the analysis
methods of ASV and ICP-MS.

Models tested on log-transformed data:

Model 1 BLLICP−MS pooled = β0 + β1
(

BLLLCP pooled

)

+ ǫ

Model 2 BLLICP−MS fresh = β0 + β1
(

BLLLCP fresh

)

+ ǫ

Model 3 BLLICP−MS frozen = β0 + β1
(

BLLLCP frozen

)

+ ǫ

Significance for analysis was set at α = 0.05. Diagnostics plots for
the regression models were checked.

RESULTS

BLL analyzed with the LCP had a median of 99 µg/L (mean
106.3 µg/L) in a range of 40–231 µg/L. BLL analyzed with ICP-
MS had a mean of 88.1 µg/L (median 83 µg/L) in a range of
32.5–173.0 µg/L.

The LCP was significantly correlated to the ICP-MS BLL both
for overall as well as fresh and frozen samples separately (Table 1,
Figure 1) and conversion equations were based on the models
1, 2 and 3. An overall positive bias of the LCP was found with
Bland-Altman analysis. For pooled samples, 19.01% (CI: 16.62–
21.40%), for fresh samples at 22.50% (CI: 19.53–25.47%), and for

frozen samples 16.32% (CI: 12.83–19.82%) (Figure 2) showing an
overestimation of the BLL compared to ICP-MS results.

When applying the conversion equation on the BLLLCP, the
new, calculated BLL was not significantly different from the
BLLICP−MS (pooled, P = 0.933; fresh, P = 0.978; frozen, P =

0.988) with similar range.

DISCUSSION

The results showed a high correlation between LCP and ICP-
MS, although with a linear positive bias (overestimation) of
16.3–22.5% of the LCP. Conversion equations for BLLLCP were
established to estimate BLLICP−MS in brown bears for the
observed range of this study. Furthermore, the results indicate
that Scandinavian brown bears are exposed to elevated BLL.

The positive bias of the LCP contrasts with all other
comparison studies conducted on wildlife and cattle, as these
studies found a negative bias on the analyzers using the same
method (ASV). The frozen samples of our study had a smaller
bias when compared to the gold standard which is in alignment
with findings by Herring et al. (23) in avian species. Conversion
equations for the LCP results to estimate ICP-MS BLL both
for pooled, fresh and frozen samples were made, which can
be used for future studies in brown bears to approximate
the gold standard levels. The pooled conversion formula was
provided for the use with a small sample size comprising of
both fresh and frozen samples. The higher r2-value of the pooled
conversion formula could be influenced by the larger sample size
in this group.

The BLLs of this study were higher than the levels Rogers
et al. (30) found in black bears and grizzly bears in Yellowstone,
however these levels were only analyzed on a LeadCare R© system,
and were not validated.

BLLs cannot be directly compared with levels measured using
other methods because of the identified bias. Using LCP BLL
without correcting for the bias could lead to an overestimation
of the actual lead exposure within the observed range of
this study.

Factors Affecting BLL or Measurements
The LeadCare R© manufacturer recommends to use fresh blood
samples, and the FDA permits the use of the machine when
used for capillary samples for humans (43). Freezing has been
shown to impact the results of BLLs in wildlife (23) and humans
(44), and the length of freezing may have had an effect on the
measured BLL in this study as the freezing causes evaporation.
We saw a smaller bias between the LCP and the ICP-MS in
our samples that had been stored frozen prior to LCP analysis,
with cause yet to be identified. To examine possible evaporation
due to freezing, the samples could in future analysis be weighed
before freezing and after thawing for reanalysis after long
term storage.

Packed cell volume (PCV) could affect the measured BLLs, as
stress throughout the capture, and especially during the chasing
period, can cause dehydration and contraction of the spleen
during exertion (45). A higher PCV likely gives a higher BLL
reading using any analysis method, because of a relatively higher
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TABLE 1 | Model parameters with P-values, r2 and Bland-Altman analyzed bias showing a positive bias of the LeadCare® Plus (LCP) for pooled (N = 124), fresh

(N = 54), and frozen (N = 70) samples of blood lead levels in Scandinavian brown bear (Ursus arctos) and conversion equation based on the regression coefficients for

the models 1, 2, and 3 to estimate blood lead levels when analyzed with Inductively coupled plasma mass spectrometry (ICP-MS).

ICP-MS as a

function of LCP

P r2 Bland-Altman bias [CI95] Conversion equation

Model 1—Pooled <0.001 0.864 0.1901 [0.1662–0.2140] logy = 0.0279 + 0.9527(log x)

Model 2—Fresh <0.001 0.923 0.2250 [0.1953–0.2547] logy = −0.0779 + 0.9684(log x)

Model 3—Frozen <0.001 0.817 0.1632 [0.1283–0.1982] logy = 0.0292 + 0.9579(log x)

CI95: 95% confidence interval.

FIGURE 1 | Linear regression of pooled, Model 1 (A), fresh, Model 2 (B), and frozen, Model 3 (C) blood lead levels (BLL) of Scandinavian Brown bear (Ursus arctos)

(sampled 2010–2018) measured with inductively coupled plasma mass spectrometry (ICP-MS) as a function of BLL measured with LeadCare® Plus (LCP). Linear

regression model (blue) with 95% confidence interval (gray) and added dashed line of optimal 1 to 1 comparison, and equation of the model with r2. Plotted with log

transformed data.

FIGURE 2 | Bland-Altman plot for log transformed pooled (A), fresh (B), and frozen (C) blood lead levels (BLL) in Scandinavian brown bear (Ursus arctos) comparing

analysis methods Inductively coupled plasma mass spectrometry (ICP-MS) and LeadCare® Plus (LCP). X axis shows the log ICP-MS as gold standard reference and

Y axis shows differences (logBLLLCP-logBLLICP−MS). Represented is mean difference (bias) in blue line with 95% confidence interval in shaded blue with upper limit of

agreement of Bland-Altman analysis in green line with 95% confidence interval in shaded green (+1.96*standard deviation) and lower limit of agreement

(−1-96*standard deviation) in red line with 95% confidence interval in shaded red.

concentration of red blood cells, to which a majority of the
lead is bound. Reference PCV for free-ranging brown bears is
0.41–0.54% (46) following the same capture methods as used in
this study, with a seasonal variation of higher PCV in winter
compared to summer (47, 48).

BLLs show recent lead exposure or endogenous lead
remobilised due to bone resorption. During hibernation, the
bear maintains bone mass through balanced bone resorption and
formation activity (49, 50). Continuous endogenous exposure

could keep the BLLs elevated during hibernation and possibly
result in the high concentrations observed in the spring.

A trend of higher bone resorption is seen in bears that
give birth (51). As lead is transferred through the placenta and
through the milk during the lactational period (18), there could
be a higher endogenous exposure in females but overall lower
body lead burden because of higher excretion compared tomales.
The accumulative body lead burden can be measured in bone to
investigate life history exposure and sex differences of the bears.
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However, accumulation site depends on bone formation activity
at time of exposure (52). This is in alignment with findings by
Herring et al. (53) that measured bone lead in the femoral bone
of brown bears in Croatia. They found differing concentrations
within the same individual, dependent on location of sampling
site for both trabecular and compact bone.

The LeadCare R© analyzers were recalled in May 2017 (54) due
to underestimations of BLLs when using venous blood samples
in humans. Caldwell et al. (55) reported that the CDC quality
assurance program in the last five quality challenges found that
participating laboratories were able to accurately analyse BLLs
with a LeadCare R© Ultra or Plus in 70% of the cases with a set
evaluation criteria limit of ±20 µg/L on bovine venous samples
that had been stored frozen until distribution. In the same
study, overall accuracy of all participating laboratories with no
distinction between methods was 89% with the same evaluation
criteria limit of ±20 µg/L. This inaccuracy is to be kept in mind
when analyzing LCP results.

Perspectives
Lead exposure from spent hunting ammunition is considered a
major ecological and One Health concern (56). Ingestion of lead
ammunition has not definitively been identified in bears (30).
However, novel ways to identify source of exposure from other
wildlife studies can be implemented, like measuring antimony
(Sb) (57), another component of lead alloy in lead ammunition
(58, 59). As lead is present in the environment, other food sources
such as berries and ants should be investigated as potential
sources, as well as exposure from active leadmines and secondary
lead smelters.

The BLLs found in this study show a significant exposure to
lead with unknown behavioral or physiological impact on the
bears. Accurate monitoring of lead exposure in wildlife species
is essential for identifying risks associated with toxicants that are
proven harmful. The bear could be used as a sentinel species,
as it is an opportunistic omnivore (60) and scavenger (35, 61).
Using bear blood as a biomarker for recent exposure, or to
compare temporal studies before and after legislative changes, is
a relatively easy and readily available tool in biomonitoring.

Monitoring of acute or endogenous lead exposure in
individuals, for health assessment, as well as on population
level can be carried out using portable lead analyzers such as
the LeadCare R© Plus with provided conversion equations to
approximate gold standard levels within the observed range of
this study.

This is the initiating study on lead in Scandinavian brown
bears and further research is necessary to investigate potential
harmful effects and possible sources of exposure.
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