85 research outputs found

    SIV Infection Induces Accumulation of Plasmacytoid Dendritic Cells in the Gut Mucosa

    Get PDF
    Multiple studies suggest that plasmacytoid dendritic cells (pDCs) are depleted and dysfunctional during human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but little is known about pDCs in the gut—the primary site of virus replication. Here, we show that during SIV infection, pDCs were reduced 3-fold in the circulation and significantly upregulated the gut-homing marker α4β7, but were increased 4-fold in rectal biopsies of infected compared to naive macaques. These data revise the understanding of pDC immunobiology during SIV infection, indicating that pDCs are not necessarily depleted, but instead may traffic to and accumulate in the gut mucosa

    SIV Infection Induces Accumulation of Plasmacytoid Dendritic Cells in the Gut Mucosa

    Get PDF
    Multiple studies suggest that plasmacytoid dendritic cells (pDCs) are depleted and dysfunctional during human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but little is known about pDCs in the gut—the primary site of virus replication. Here, we show that during SIV infection, pDCs were reduced 3-fold in the circulation and significantly upregulated the gut-homing marker α4β7, but were increased 4-fold in rectal biopsies of infected compared to naive macaques. These data revise the understanding of pDC immunobiology during SIV infection, indicating that pDCs are not necessarily depleted, but instead may traffic to and accumulate in the gut mucosa

    The influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites

    Get PDF
    Tetrahedrites are promising p-type thermoelectric materials for energy recovery. We present here the first investigation of the structure and thermoelectric properties of copper-rich tetrahedrites, Cu12+xSb4S13 (0 0 consist of two tetrahedrite phases. In-situ neutron diffraction data demonstrate that on heating, the two tetrahedrite phases coalesce into a single tetrahedrite phase at temperatures between 493 and 553 K, and that this transition shows marked hysteresis on cooling. Our structural data indicate that copper ions become mobile above 393 K. Marked changes in the temperature dependence of the electrical and thermal transport properties of the copper-rich phases occur at the onset of copper mobility. Excess copper leads to a significant reduction in the total thermal conductivity, which for the nominal composition Cu14Sb4S13 reaches a value as low as 0.44 W m-1K-1 at room temperature, and to thermoelectric properties consistent with phonon liquid electron crystal (PLEC) behaviour

    Three Warm Jupiters around Solar-analog Stars Detected with TESS*

    Get PDF
    We report the discovery and characterization of three giant exoplanets orbiting solar-analog stars, detected by the TESS space mission and confirmed through ground-based photometry and radial velocity measurements taken at La Silla observatory with FEROS. TOI-2373 b is a warm Jupiter orbiting its host star every ∼13.3 days, and is one of the most massive known exoplanet with a precisely determined mass and radius around a star similar to the Sun, with an estimated mass of m _p = 9.30.2+0.2Mjup{9.3}_{-0.2}^{+0.2}\,{M}_{\mathrm{jup}} and a radius of r _p = 0.930.2+0.2Rjup{0.93}_{-0.2}^{+0.2}\,{R}_{\mathrm{jup}} . With a mean density of ρ=14.41.0+0.9gcm3\rho ={14.4}_{-1.0}^{+0.9}\,{\rm{g}}\,{\mathrm{cm}}^{-3} , TOI-2373 b is among the densest planets discovered so far. TOI-2416 b orbits its host star on a moderately eccentric orbit with a period of ∼8.3 days and an eccentricity of e = 0.320.02+0.02{0.32}_{-0.02}^{+0.02} . TOI-2416 b is more massive than Jupiter with m _p = 3.00.09+0.10Mjup{3.0}_{-0.09}^{+0.10}\,{M}_{\mathrm{jup}} , however is significantly smaller with a radius of r _p = 0.880.02+0.02,Rjup{0.88}_{-0.02}^{+0.02},{R}_{\mathrm{jup}} , leading to a high mean density of ρ=5.40.3+0.3gcm3\rho ={5.4}_{-0.3}^{+0.3}\,{\rm{g}}\,{\mathrm{cm}}^{-3} . TOI-2524 b is a warm Jupiter near the hot Jupiter transition region, orbiting its star every ∼7.2 days on a circular orbit. It is less massive than Jupiter with a mass of m _p = 0.640.04+0.04Mjup{0.64}_{-0.04}^{+0.04}\,{M}_{\mathrm{jup}} , and is consistent with an inflated radius of r _p = 1.000.03+0.02Rjup{1.00}_{-0.03}^{+0.02}\,{R}_{\mathrm{jup}} , leading to a low mean density of ρ=0.790.08+0.08gcm3\rho ={0.79}_{-0.08}^{+0.08}\,{\rm{g}}\,{\mathrm{cm}}^{-3} . The newly discovered exoplanets TOI-2373 b, TOI-2416 b, and TOI-2524 b have estimated equilibrium temperatures of 86010+10{860}_{-10}^{+10} K, 108010+10{1080}_{-10}^{+10} K, and 110020+20{1100}_{-20}^{+20} K, respectively, placing them in the sparsely populated transition zone between hot and warm Jupiters

    Three long period transiting giant planets from TESS

    Get PDF
    We report the discovery and orbital characterization of three new transiting warm giant planets. These systems were initially identified as presenting single transit events in the light curves generated from the full frame images of the Transiting Exoplanet Survey Satellite (TESS). Follow-up radial velocity measurements and additional light curves were used to determine the orbital periods and confirm the planetary nature of the candidates. The planets orbit slightly metal-rich late F- and early G-type stars. We find that TOI 4406b has a mass of MPM_P= 0.30 ±\pm 0.04 MJM_J , a radius of RPR_P= 1.00 ±\pm 0.02 RJR_J , and a low eccentricity orbit (e=0.15 ±\pm 0.05) with a period of P= 30.08364 ±\pm 0.00005 d . TOI 2338b has a mass of MPM_P= 5.98 ±\pm 0.20 MJM_J , a radius of RPR_P= 1.00 ±\pm 0.01 RJR_J , and a highly eccentric orbit (e= 0.676 ±\pm 0.002 ) with a period of P= 22.65398 ±\pm 0.00002 d . Finally, TOI 2589b has a mass of MPM_P= 3.50 ±\pm 0.10 MJM_J , a radius of RPR_P= 1.08 ±\pm 0.03 RJR_J , and an eccentric orbit (e = 0.522 ±\pm 0.006 ) with a period of P= 61.6277 ±\pm 0.0002 d . TOI 4406b and TOI 2338b are enriched in metals compared to their host stars, while the structure of TOI 2589b is consistent with having similar metal enrichment to its host star.Comment: 24 pages, 16 figures, accepted in A

    Three Saturn-mass planets transiting F-type stars revealed with TESS and HARPS

    Get PDF
    While the sample of confirmed exoplanets continues to increase, the population of transiting exoplanets around early-type stars is still limited. These planets allow us to investigate the planet properties and formation pathways over a wide range of stellar masses and study the impact of high irradiation on hot Jupiters orbiting such stars. We report the discovery of TOI-615b, TOI-622b, and TOI-2641b, three Saturn-mass planets transiting main sequence, F-type stars. The planets were identified by the Transiting Exoplanet Survey Satellite (TESS) and confirmed with complementary ground-based and radial velocity observations. TOI-615b is a highly irradiated (\sim1277 FF_{\oplus}) and bloated Saturn-mass planet (1.690.06+0.05^{+0.05}_{-0.06}RJupR_{Jup} and 0.430.08+0.09^{+0.09}_{-0.08}MJupM_{Jup}) in a 4.66 day orbit transiting a 6850 K star. TOI-622b has a radius of 0.820.03+0.03^{+0.03}_{-0.03}RJupR_{Jup} and a mass of 0.300.08+0.07^{+0.07}_{-0.08}~MJupM_{Jup} in a 6.40 day orbit. Despite its high insolation flux (\sim600 FF_{\oplus}), TOI-622b does not show any evidence of radius inflation. TOI-2641b is a 0.370.04+0.05^{+0.05}_{-0.04}MJupM_{Jup} planet in a 4.88 day orbit with a grazing transit (b = 1.040.06+0.05^{+0.05}_{-0.06 }) that results in a poorly constrained radius of 1.610.64+0.46^{+0.46}_{-0.64}RJupR_{Jup}. Additionally, TOI-615b is considered attractive for atmospheric studies via transmission spectroscopy with ground-based spectrographs and JWST\textit{JWST}. Future atmospheric and spin-orbit alignment observations are essential since they can provide information on the atmospheric composition, formation and migration of exoplanets across various stellar types.Comment: 16 pages, 17 figures, submitted to A&

    Transit timings variations in the three-planet system: TOI-270

    Get PDF
    We present ground- and space-based photometric observations of TOI-270 (L231-32), a system of three transiting planets consisting of one super-Earth and two sub-Neptunes discovered by TESS around a bright (K-mag = 8.25) M3V dwarf. The planets orbit near low-order mean-motion resonances (5:3 and 2:1) and are thus expected to exhibit large transit timing variations (TTVs). Following an extensive observing campaign using eight different observatories between 2018 and 2020, we now report a clear detection of TTVs for planets c and d, with amplitudes of ∼10 min and a super-period of ∼3 yr, as well as significantly refined estimates of the radii and mean orbital periods of all three planets. Dynamical modelling of the TTVs alone puts strong constraints on the mass ratio of planets c and d and on their eccentricities. When incorporating recently published constraints from radial velocity observations, we obtain masses of Mb=1.48± 0.18, M⊕, Mc=6.20± 0.31, M⊕, and Md=4.20± 0.16, M⊕ for planets b, c, and d, respectively. We also detect small but significant eccentricities for all three planets: eb = 0.0167 ± 0.0084, ec = 0.0044 ± 0.0006, and ed = 0.0066 ± 0.0020. Our findings imply an Earth-like rocky composition for the inner planet, and Earth-like cores with an additional He/H2O atmosphere for the outer two. TOI-270 is now one of the best constrained systems of small transiting planets, and it remains an excellent target for atmospheric characterization

    Computational Modelling of Tissue-Engineered Cartilage Constructs

    Get PDF
    Cartilage is a fundamental tissue to ensure proper motion between bones and damping of mechanical loads. This tissue often suffers damage and has limited healing capacity due to its avascularity. In order to replace surgery and replacement of joints by metal implants, tissue engineered cartilage is seen as an attractive alternative. These tissues are obtained by seeding chondrocytes or mesenchymal stem cells in scaffolds and are given certain stimuli to improve establishment of mechanical properties similar to the native cartilage. However, tissues with ideal mechanical properties were not obtained yet. Computational models of tissue engineered cartilage growth and remodelling are invaluable to interpret and predict the effects of experimental designs. The current model contribution in the field will be presented in this chapter, with a focus on the response to mechanical stimulation, and the development of fully coupled modelling approaches incorporating simultaneously solute transport and uptake, cell growth, production of extracellular matrix and remodelling of mechanical properties.publishe
    corecore