18 research outputs found

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Abstract: Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    Evolutionary and biochemical analyses reveal conservation of the Brassicaceae telomerase ribonucleoprotein complex.

    No full text
    The telomerase ribonucleoprotein complex (RNP) is essential for genome stability and performs this role through the addition of repetitive DNA to the ends of chromosomes. The telomerase enzyme is composed of a reverse transcriptase (TERT), which utilizes a template domain in an RNA subunit (TER) to reiteratively add telomeric DNA at the ends of chromosomes. Multiple TERs have been identified in the model plant Arabidopsis thaliana. Here we combine a phylogenetic and biochemical approach to understand how the telomerase RNP has evolved in Brassicaceae, the family that includes A. thaliana. Because of the complex phylogenetic pattern of template domain loss and alteration at the previously characterized A. thaliana TER loci, TER1 and TER2, across the plant family Brassicaceae, we bred double mutants from plants with a template deletion at AtTER1 and T-DNA insertion at AtTER2. These double mutants exhibited no telomere length deficiency, a definitive indication that neither of these loci encode a functional telomerase RNA. Moreover, we determined that the telomerase components TERT, Dyskerin, and the KU heterodimer are under strong purifying selection, consistent with the idea that the TER with which they interact is also conserved. To test this hypothesis further, we analyzed the substrate specificity of telomerase from species across Brassicaceae and determined that telomerase from close relatives bind and extend substrates in a similar manner, supporting the idea that TERs in different species are highly similar to one another and are likely encoded from an orthologous locus. Lastly, TERT proteins from across Brassicaceae were able to complement loss of function tert mutants in vivo, indicating TERTs from other species have the ability to recognize the native TER of A. thaliana. Finally, we immunoprecipitated the telomerase complex and identified associated RNAs via RNA-seq. Using our evolutionary data we constrained our analyses to conserved RNAs within Brassicaceae that contained a template domain. These analyses revealed a highly expressed locus whose disruption by a T-DNA resulted in a telomeric phenotype similar to the loss of other telomerase core proteins, indicating that the RNA has an important function in telomere maintenance

    Ancient Origin and Recent Innovations of RNA Polymerase IV and V

    No full text
    Small RNA-mediated chromatin modification is a conserved feature of eukaryotes. In flowering plants, the short interfering (si)RNAs that direct transcriptional silencing are abundant and subfunctionalization has led to specialized machinery responsible for synthesis and action of these small RNAs. In particular, plants possess polymerase (Pol) IV and Pol V, multi-subunit homologs of the canonical DNA-dependent RNA Pol II, as well as specialized members of the RNA-dependent RNA Polymerase (RDR), Dicer-like (DCL), and Argonaute (AGO) families. Together these enzymes are required for production and activity of Pol IV-dependent (p4-)siRNAs, which trigger RNA-directed DNA methylation (RdDM) at homologous sequences. p4-siRNAs accumulate highly in developing endosperm, a specialized tissue found only in flowering plants, and are rare in nonflowering plants, suggesting that the evolution of flowers might coincide with the emergence of specialized RdDM machinery. Through comprehensive identification of RdDM genes from species representing the breadth of the land plant phylogeny, we describe the ancient origin of Pol IV and Pol V, suggesting that a nearly complete and functional RdDM pathway could have existed in the earliest land plants. We also uncover innovations in these enzymes that are coincident with the emergence of seed plants and flowering plants, and recent duplications that might indicate additional subfunctionalization. Phylogenetic analysis reveals rapid evolution of Pol IV and Pol V subunits relative to their Pol II counterparts and suggests that duplicates were retained and subfunctionalized through Escape from Adaptive Conflict. Evolution within the carboxy-terminal domain of the Pol V largest subunit is particularly striking, where illegitimate recombination facilitated extreme sequence divergence

    A Genomic Analysis of Factors Driving lincRNA Diversification: Lessons from Plants

    No full text
    Transcriptomic analyses from across eukaryotes indicate that most of the genome is transcribed at some point in the developmental trajectory of an organism. One class of these transcripts is termed long intergenic noncoding RNAs (lincRNAs). Recently, attention has focused on understanding the evolutionary dynamics of lincRNAs, particularly their conservation within genomes. Here, we take a comparative genomic and phylogenetic approach to uncover factors influencing lincRNA emergence and persistence in the plant family Brassicaceae, to which Arabidopsis thaliana belongs. We searched 10 genomes across the family for evidence of > 5000 lincRNA loci from A. thaliana. From loci conserved in the genomes of multiple species, we built alignments and inferred phylogeny. We then used gene tree/species tree reconciliation to examine the duplication history and timing of emergence of these loci. Emergence of lincRNA loci appears to be linked to local duplication events, but, surprisingly, not whole genome duplication events (WGD), or transposable elements. Interestingly, WGD events are associated with the loss of loci for species having undergone relatively recent polyploidy. Lastly, we identify 1180 loci of the 6480 previously annotated A. thaliana lincRNAs (18%) with elevated levels of conservation. These conserved lincRNAs show higher expression, and are enriched for stress-responsiveness and cis-regulatory motifs known as conserved noncoding sequences (CNSs). These data highlight potential functional pathways and suggest that CNSs may regulate neighboring genes at both the genomic and transcriptomic level. In sum, we provide insight into processes that may influence lincRNA diversification by providing an evolutionary context for previously annotated lincRNAs

    Phenotypic and Draft Genome Sequence Analyses of a <i>Paenibacillus</i> sp. Isolated from the Gastrointestinal Tract of a North American Gray Wolf (<i>Canis lupus</i>)

    No full text
    The discovery of novel probiotic bacteria from free-ranging animals for the treatment of inflammatory bowel disease in domestic pets is a unique approach. The chloroform extraction of gastrointestinal (GI) tract material was used to inactivate vegetative cells and select for spore-forming bacteria. A bacterium identified as a novel Paenibacillus sp. strain via small ribosomal RNA (16S) gene sequencing was isolated from the GI tract of a gray wolf (Canis lupus). The bacterium was typed as Gram-variable, both catalase/oxidase-positive and positive via starch hydrolysis and lipase assays. The bacterium inhibited the growth of Staphylococcus aureus, Escherichia coli and Micrococcus luteus. The draft whole genome sequence (WGS) assembly was 7,034,206 bp in length, encoding 6543 genes, and is similar in size and coding capacity to other closely related Paenibacillus spp. The isolate’s genome encodes several germination and sporulation gene products along with antimicrobials such as a bacteriocin system and chitinase. Enzyme genes such as alpha amylase, cellulase, lipases and pectin lyase are also present in the genome. An incomplete lysogenic bacteriophage genome was also present in the isolate’s genome. Phenotypic characteristics combined with a WGS genotype analysis indicate that this bacterium, designated Paenibacillus sp. ClWae2A, could be a potential candidate probiotic for domestic dogs
    corecore