11 research outputs found

    Serum neutralizing capacity and T-cell response against the omicron BA.1 variant in seropositive children and their parents one year after SARS-CoV-2 infection

    Get PDF
    IntroductionDurability of immune protection against reinfection with SARS-CoV-2 remains enigmatic, especially in the pediatric population and in the context of immune-evading variants of concern. Obviously, this knowledge is required for measures to contain the spread of infection and in selecting rational preventive measures.MethodsHere, we investigated the serum neutralization capacity of 36 seropositive adults and 34 children approximately one year after infection with the ancestral Wuhan strain of SARS-CoV-2 by using a pseudovirus neutralization assay.ResultsWe found that 88.9% of seropositive adult (32/36) and 94.1% of seropositive children (32/34) convalescents retained the neutralizing activity against the SARS-CoV-2 Wuhan strain (WT). Although, the neutralization effect against Omicron BA.1 (B.1.1.529.1) was significantly lower, 70.6% (24/34) of children and 41.7% (15/36) of adults possessed BA.1 cross-neutralizing antibodies. The spike 1 (S1)-specific T cell recall capacity using an activation-induced marker assay was analyzed in 18 adults and 16 children. All participants had detectable S1-specific CD4 T cells against WT, and 72.2% (13/18) adults and 81,3% (13/16) children had detectable S1 WT-specific CD8 T cells. CD4 cross-reactivity against BA.1 was demonstrated in all investigated adults (18/18), and 66.7% (12/18) adult participants had also detectable specific CD8 BA.1 T cells while we detected BA.1 S1 reactive CD4 and CD8 T cells in 81.3% (13/16) children.DiscussionTogether, our findings demonstrate that infection with the ancestral strain of SARS-CoV-2 in children as well as in adults induces robust serological as well as T cell memory responses that persist over at least 12 months. This suggests persistent immunological memory and partial cross-reactivity against Omicron BA.1

    A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control

    Get PDF
    Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Gaia Early Data Release 3: Structure and properties of the Magellanic Clouds

    Get PDF
    We compare the Gaia DR2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insights into features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones

    mRNA Vaccines Enhance Neutralizing Immunity against SARS-CoV-2 Variants in Convalescent and ChAdOx1-Primed Subjects

    No full text
    To identify the most efficient methods of immunological protection against SARS-CoV-2, including the currently most widespread variants of concern (VOCs)—B.1.1.7, B.1.351 and P.1—a simultaneous side-by-side-comparison of available vaccination regimes is required. In this observational cohort study, we compared immunological responses in 144 individuals vaccinated with the mRNA vaccines BNT162b2 or mRNA-1273 and the vector vaccine ChAdOx1-nCoV-19, either alone, in combination, or in the context of COVID-19-convalescence. Unvaccinated COVID-19-convalescent subjects served as a reference. We found that cellular and serological immune responses, including neutralizing capacity against VOCs, were significantly stronger with mRNA vaccines as compared with COVID-19-convalescent individuals or vaccinated individuals receiving the vector vaccine ChAdOx1-nCoV-19. Booster immunizations with mRNA vaccines triggered strong and broadly neutralizing antibody and IFN-γ responses in 100% of vaccinated individuals investigated. This effect was particularly strong in COVID-19-convalescent and ChAdOx1-nCoV-19-primed individuals, who were characterized by comparably moderate cellular and neutralizing antibody responses before mRNA vaccine booster. Heterologous vaccination regimes and convalescent booster regimes using mRNA vaccines may allow enhanced protection against SARS-CoV-2, including current VOCs. Furthermore, such regimes may facilitate rapid (re-)qualification of convalescent plasma donors with high titers of broadly neutralizing antibodies

    Ocean acidification: linking science to management solutions using the Great Barrier Reef as a case study

    No full text
    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution

    High antibody levels and reduced cellular response in children up to one year after SARS-CoV-2 infection.

    No full text
    The COVID-19 course and immunity differ in children and adults. We analyzed immune response dynamics in 28 families up to 12 months after mild or asymptomatic infection. Unlike adults, the initial response is plasmablast-driven in children. Four months after infection, children show an enhanced specific antibody response and lower but detectable spike 1 protein (S1)-specific B and T cell responses than their parents. While specific antibodies decline, neutralizing antibody activity and breadth increase in both groups. The frequencies of S1-specific B and T cell responses remain stable. However, in children, one year after infection, an increase in the S1-specific IgA class switch and the expression of CD27 on S1-specific B cells and T cell maturation are observed. These results, together with the enhanced neutralizing potential and breadth of the specific antibodies, suggest a progressive maturation of the S1-specific immune response. Hence, the immune response in children persists over 12 months but dynamically changes in quality, with progressive neutralizing, breadth, and memory maturation. This implies a benefit for booster vaccination in children to consolidate memory formation
    corecore