31 research outputs found

    Legionella pneumophila in Municipal Shower Systems in Stavanger, Norway; A Longitudinal Surveillance Study Using Whole Genome Sequencing in Risk Management

    Get PDF
    Following an incidence of Legionnaires disease (LD) in 2007, where a municipal shower system was the likely source of infection, Stavanger municipality initiated a surveillance program for Legionella as part of establishing internal risk evaluation and prevention routines. More than 250 shower systems were examined for cultivatable Legionella pneumophila. The prevalence and diversity of serogroups (sg) and sequence types (STs) of L. pneumophila were mapped using available typing techniques over a period of more than 10 years (2010–2021). The surveillance showed an overall reduction in the L. pneumophila colonisation rate in municipal systems from 11 to 4.5% following prevention measures during the period, with the highest colonisation rate in complex systems (e.g., larger nursing homes and sports complexes). Further, an approximately even distribution between sg1 and 2–14 was seen. Whole genome sequencing (WGS) revealed that only a limited number of STs were detected, and they were consistent at specific locations over time. This study showed that environmental surveillance data in combination with available typing techniques and WGS can give the municipality a better tool for risk management and an overview of ST distributions that can be a valuable asset in future source investigations.publishedVersio

    Long-read sequencing for reliably calling the mompS allele in Legionella pneumophila sequence-based typing

    Get PDF
    Sequence-based typing (SBT) of Legionella pneumophila is a valuable tool in epidemiological studies and outbreak investigations of Legionnaires’ disease. In the L. pneumophila SBT scheme, mompS2 is one of seven genes that determine the sequence type (ST). The Legionella genome typically contains two copies of mompS (mompS1 and mompS2). When they are non-identical it can be challenging to determine the mompS2 allele, and subsequently the ST, from Illumina short-reads. In our collection of 233 L. pneumophila genomes, there were 62 STs, 18 of which carried non-identical mompS copies. Using short-reads, the mompS2 allele was misassembled or untypeable in several STs. Genomes belonging to ST154 and ST574, which carried mompS1 allele 7 and mompS2 allele 15, were assigned an incorrect mompS2 allele and/or mompS gene copy number when short-read assembled. For other isolates, mainly those carrying non-identical mompS copies, short-read assemblers occasionally failed to resolve the structure of the mompS-region, also resulting in untypeability from the short-read data. In this study, we wanted to understand the challenges we observed with calling the mompS2 allele from short-reads, assess if other short-read methods were able to resolve the mompS-region, and investigate the possibility of using long-reads to obtain the mompS alleles, and thereby perform L. pneumophila SBT from long-reads only. We found that the choice of short-read assembler had a major impact on resolving the mompS-region and thus SBT from short-reads, but no method consistently solved the mompS2 allele. By using Oxford Nanopore Technology (ONT) sequencing together with Trycycler and Medaka for long-read assembly and polishing we were able to resolve the mompS copies and correctly identify the mompS2 allele, in accordance with Sanger sequencing/EQA results for all tested isolates (n=35). The remaining six genes of the SBT profile could also be determined from the ONT-only reads. The STs called from ONT-only assemblies were also consistent with hybrid-assemblies of Illumina and ONT reads. We therefore propose ONT sequencing as an alternative method to perform L. pneumophila SBT to overcome the mompS challenge observed with short-reads. To facilitate this, we have developed ONTmompS (https://github.com/marithetland/ONTmompS), an in silico approach to determine L. pneumophila ST from long-read or hybrid assemblies.publishedVersio

    Population dynamics and characteristics of Klebsiella pneumoniae from healthy poultry in Norway

    Get PDF
    Klebsiella pneumoniae is an important opportunistic pathogen widely studied in relation to human infection and colonization. However, there is a lack of knowledge regarding other niches that K. pneumoniae may inhabit. K. pneumoniae isolated from healthy broiler and turkey flocks in Norway in 2018 have previously been described with regard to population structure, sequence types (STs), and the presence of virulence- and antimicrobial resistance (AMR) genes. In the present study we aimed to evaluate the dynamics of the K. pneumoniae population in poultry over time, with regards to AMR and virulence, and with a special focus on persistence of STs. A total of 391 flocks sampled in 2020 were included in the present study, of which 271 were from broiler flocks and 120 from turkey flocks. Similar to findings from 2018, the occurrence of K. pneumoniae was significantly higher based on culturing in turkey flocks (62.5%) compared to broiler flocks (24.0%). Major STs in 2020 included ST5827 (n = 7), ST37 (n = 7), ST370 (n = 7), ST17 (n = 5), and ST4710 (n = 5). Several STs persisted over time in both host species, including ST35, ST37, ST590, and ST17. This persistence may be due to local re-circulation or reintroduction from parent flocks. Of these five major STs, only ST590 carried AMR genes, indicating that the persistence was not associated with the presence of AMR genes. An ST4710 strain with a hypervirulence-encoding plasmid (p4710; iro5, iuc5) was recovered from turkeys in 2018. The same strain was present in turkeys in 2020, but the plasmid had lost the salmochelin locus. This loss may be attributed to reductive evolution due to the presence of several siderophores within the same isolates. In this study we also characterized a clinical ST4710 isolate from a turkey with airsacculitis. The isolate was closely related to two intestinal ST4710 isolates from healthy turkeys in 2018. These three isolates were sampled within the same location and time frame in 2018, and all carried the full p4710 virulence plasmid. These findings highlight the transmission- and infectious potential of ST4710 in turkeys.publishedVersio

    Highly conserved composite transposon harbouring aerobactin iuc3 in Klebsiella pneumoniae from pigs

    Get PDF
    Klebsiella pneumoniae is an important opportunistic pathogen associated with severe invasive disease in humans. Hypervirulent K. pneumoniae, which are K. pneumoniae with several acquired virulence determinants such as the siderophore aerobactin and others, are more prominent in countries in South and South-East Asia compared to European countries. This Klebsiella pathotype is capable of causing liver abscesses in immunocompetent persons in the community. K. pneumoniae has not been extensively studied in non-human niches. In the present study, K. pneumoniae isolated from caecal samples (n=299) from healthy fattening pigs in Norway were characterized with regard to population structure and virulence determinants. These data were compared to data from a previous study on K. pneumoniae from healthy pigs in Thailand. Lastly, an in-depth plasmid study on K. pneumoniae with aerobactin was performed. Culturing and whole-genome sequencing was applied to detect, confirm and characterize K. pneumoniae isolates. Phylogenetic analysis described the evolutionary relationship and diversity of the isolates, while virulence determinants and sequence types were detected with Kleborate. Long-read sequencing was applied to obtain the complete sequence of virulence plasmids harbouring aerobactin. A total of 48.8 % of the investigated Norwegian pig caecal samples (n=299) were positive for K. pneumoniae. Acquired virulence determinants were detected in 72.6 % of the isolates, the most prominent being aerobactin (69.2 %), all of which were iuc3. In contrast, only 4.6 % of the isolates from Thailand harboured aerobactin. The aerobactin operon was located on potentially conjugative IncFIBK/FIIK plasmids of varying sizes in isolates from both countries. A putative, highly conserved composite transposon with a mean length of 16.2 kb flanked by truncated IS3-family IS407-group insertion sequences was detected on these plasmids, harbouring the aerobactin operon as well as several genes that may confer increased fitness in mammalian hosts. This putative composite transposon was also detected in plasmids harboured by K. pneumoniae from several countries and sources, such as human clinical samples. The high occurrence of K. pneumoniae harbouring aerobactin in Norwegian pigs, taken together with international data, suggest that pigs are a reservoir for K. pneumoniae with iuc3. Truncation of the flanking ISKpn78-element suggest that the putative composite transposon has been permanently integrated into the plasmid, and that it is no longer mobilizable.publishedVersio

    Complete genomes of 568 diverse Klebsiella pneumoniae species complex isolates from humans, animals and marine sources in Norway from 2001-2020

    Get PDF
    We report 579 hybrid genome assemblies (568 complete) of Klebsiella pneumoniae species complex isolates from human, animal and marine sources in Norway collected 2001-2020, belonging to six phylogroups including K. pneumoniae (n=493) and K. variicola (n=69) and 364 unique sequence types

    Risk of death in Klebsiella pneumoniae bloodstream infections is associated with specific phylogenetic lineages

    Get PDF
    Background: Klebsiella pneumoniae species complex (KpSC) bloodstream infections (BSIs) are associated with considerable morbidity and mortality, particularly in elderly and multimorbid patients. Multidrug-resistant (MDR) strains have been associated with poorer outcome. However, the clinical impact of KpSC phylogenetic lineages on BSI outcome is unclear. Methods: In an 18-month nationwide Norwegian prospective study of KpSC BSI episodes in adults, we used whole-genome sequencing to describe the molecular epidemiology of KpSC, and multivariable Cox regression analysis including clinical data to determine adjusted hazard ratios (aHR) for death associated with specific genomic lineages. Findings: We included 1078 BSI episodes and 1082 bacterial isolates from 1055 patients. The overall 30-day case-fatality rate (CFR) was 12.5%. Median patient age was 73.4, 61.7% of patients were male. Median Charlson comorbidity score was 3. Klebsiella pneumoniae sensu stricto (Kp) (79.3%, n = 858/1082) and K. variicola (15.7%, n = 170/1082) were the dominating phylogroups. Global MDR-associated Kp clonal groups (CGs) were prevalent (25.0%, n = 270/1082) but 78.9% (n = 213/270) were not MDR, and 53.7% (n = 145/270) were community acquired. The major findings were increased risk for death within 30 days in monomicrobial BSIs caused by K. variicola (CFR 16.9%, n = 21; aHR 1.86, CI 1.10-3.17, p = 0.02), and global MDR-associated Kp CGs (CFR 17.0%, n = 36; aHR 1.52, CI 0.98-2.38, p = 0.06) compared to Kp CGs not associated with MDR (CFR 10.1%, n = 46). Conclusion: Bacterial traits, beyond antimicrobial resistance, have a major impact on the clinical outcome of KpSC BSIs. The global spread of MDR-associated Kp CGs is driven by other mechanisms than antibiotic selection alone. Further insights into virulence determinants, and their association with phylogenetic lineages are needed to better understand the epidemiology of KpSC infection and clinical outcome.This work was supported the Western Norway Regional Health Authority (912119, Northern Norway Regional Health Authority (HNF1415-18), The Research Council of Norway (Project 299230) and Trond Mohn Foundation (contract TMF2019TMT03).publishedVersio

    A nationwide genomic study of clinical Klebsiella pneumoniae in Norway 2001-15: introduction and spread of ESBLs facilitated by clonal groups CG15 and CG307.

    Get PDF
    OBJECTIVES: To use the nationwide Norwegian surveillance programme on resistant microbes in humans (NORM) to address longitudinal changes in the population structure of Klebsiella pneumoniae isolates from 2001-15, focusing on the emergence and dissemination of ESBL-producing K. pneumoniae in Norway. METHODS: Among blood (n = 6124) and urinary tract (n = 5496) surveillance isolates from 2001-15, we used Illumina technology to whole genome sequence 201 ESBL-producing isolates from blood (n = 130) and urine (n = 71), and 667 non-ESBL isolates from blood. Complete genomes for four isolates were resolved with Oxford Nanopore sequencing. RESULTS: In a highly diverse collection, Klebsiella variicola ssp. variicola caused 24.5% of Klebsiella pneumoniae species complex (KpSC) bacteraemias. ESBL production was limited to K. pneumoniae sensu stricto (98.5%). A diverse ESBL population of 57 clonal groups (CGs) were dominated by MDR CG307 (17%), CG15 (12%), CG70 (6%), CG258 (5%) and CG45 (5%) carrying blaCTX-M-15. Yersiniabactin was significantly more common in ESBL-positive (37.8%) compared with non-ESBL K. pneumoniae sensu stricto isolates (12.7%), indicating convergence of virulence and resistance determinants. Moreover, we found a significantly lower prevalence of yersiniabactin (3.0%, 37.8% and 17.3%), IncFIB (58.7%, 87.9% and 79.4%) and IncFII plasmid replicons (40.5%, 82.8% and 54.2%) in K. variicola ssp. variicola compared with ESBL- and non-ESBL K. pneumoniae sensu stricto isolates, respectively. CONCLUSIONS: The increase in Norwegian ESBL-producing KpSC during 2010-15 was driven by CG307 and CG15 carrying blaCTX-M-15. K. variicola ssp. variicola was a frequent cause of invasive KpSC infection, but rarely carried ESBLs

    Complete genomes of 568 diverse Klebsiella pneumoniae species complex isolates from humans, animals, and marine sources in Norway from 2001 to 2020

    Get PDF
    We report 578 hybrid genome assemblies (568 complete) of Klebsiella pneumoniae species complex isolates from human, animal, and marine sources in Norway collected from 2001 to 2020, belonging to five phylogroups including K.pneumoniae (n = 492) and K. variicola (n = 69) and 364 unique sequence types

    External quality assessment of SARS-CoV-2-sequencing: An ESGMD-SSM pilot trial across 15 European laboratories

    Get PDF
    Objective: This first pilot on external quality assessment (EQA) of SARS-CoV-2 whole genome sequencing, initiated by the ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD) and Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing.Methods: Ten samples with varying viral loads were sent out to 15 clinical laboratories who had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centres were compared on were identification of 1) SNPs and indels, 2) Pango lineages, and 3) clusters between samples.Results: The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to varying depth (up to 100-fold difference across centres). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignment. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data.Conclusions: The pilot EQA was an overall success. It was able to show the high quality of participating labs and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.</p

    1-O-Hexadecyloxypropyl Cidofovir (CMX001) Effectively Inhibits Polyomavirus BK Replication in Primary Human Renal Tubular Epithelial Cells▿ †

    No full text
    Antiviral drugs for treating polyomavirus BK (BKV) replication in polyomavirus-associated nephropathy or hemorrhagic cystitis are of considerable clinical interest. Unlike cidofovir, the lipid conjugate 1-O-hexadecyloxypropyl cidofovir (CMX001) is orally available and has not caused detectable nephrotoxicity in rodent models or human studies to date. Primary human renal proximal tubular epithelial cells were infected with BKV-Dunlop, and CMX001 was added 2 h postinfection (hpi). The intracellular and extracellular BKV DNA load was determined by quantitative PCR. Viral gene expression was examined by quantitative reverse transcription-PCR, Western blotting, and immunofluorescence microscopy. We also examined host cell viability, proliferation, metabolic activity, and DNA replication. The titration of CMX001 identified 0.31 μM as the 90% effective concentration (EC90) for reducing the extracellular BKV load at 72 hpi. BKV large T antigen mRNA and protein expression was unaffected at 24 hpi, but the intracellular BKV genome was reduced by 90% at 48 hpi. Late gene expression was reduced by 70 and 90% at 48 and 72 hpi, respectively. Comparisons of CMX001 and cidofovir EC90s from 24 to 96 hpi demonstrated that CMX001 had a more rapid and enduring effect on BKV DNA and infectious progeny at 96 hpi than cidofovir. CMX001 at 0.31 μM had little effect on overall cell metabolism but reduced bromodeoxyuridine incorporation and host cell proliferation by 20 to 30%, while BKV infection increased cell proliferation in both rapidly dividing and near-confluent cultures. We conclude that CMX001 inhibits BKV replication with a longer-lasting effect than cidofovir at 400× lower levels, with fewer side effects on relevant host cells in vitro
    corecore