17 research outputs found

    Predominance of influenza A(H3N2) virus genetic subclade 3C.2a1 during an early 2016/17 influenza season in Europe - Contribution of surveillance data from World Health Organization (WHO) European Region to the WHO vaccine composition consultation for northern hemisphere 2017/18

    Get PDF
    European region influenza surveillance Network author lisT - Portugal: Raquel Guiomar, Pedro Pechirra, Paula Cristóvão, Inês Costa, Patricia Conde (National Influenza and Other Respiratory Virus Reference Laboratory, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon) and Ana Paula Rodrigues (Department of Epidemiology, National Instituteof Health Dr. Ricardo Jorge, Lisbon)Erratum in: Erratum to "Predominance of influenza A(H3N2) virus genetic subclade 3C.2a1 during an early 2016/17 influenza season in Europe - Contribution of surveillance data from World Health Organization (WHO) European region to the WHO vaccine composition consultation for northern hemisphere 2017/18" [Vaccine 35 (2017) 4828-4835]. [Vaccine. 2018 May 3;36(19):2740-2741. doi: 10.1016/j.vaccine.2017.12.039. Epub 2017 Dec 20]. Disponível em: https://doi.org/10.1016/j.vaccine.2017.12.039During the European 2016/17 influenza season, A(H3N2) viruses have predominated and the majority clustered in genetic subclade 3C.2a1. Genetic analyses showed that circulating viruses have undergone considerable genetic diversification of the haemagglutinin gene from the current vaccine virus A/Hong Kong/4801/2014 (clade 3C.2a), but the antigenic data that is limited by the challenges with the antigenic characterisation of currently circulating A(H3N2) viruses, showed no clear evidence of antigenic change. The recommended A(H3N2) vaccine component for the northern hemisphere 2017/18 influenza season remained unchanged. However, early and mid-season vaccine effectiveness (VE) estimates were suggestive of reduced VE against A(H3N2) viruses.info:eu-repo/semantics/publishedVersio

    Predominance of influenza A(H1N1)pdm09 virus genetic subclade 6B.1 and influenza B/Victoria lineage viruses at the start of the 2015/16 influenza season in Europe

    Get PDF
    Members of the World Health Organization European Region and European Influenza Surveillance Network of the reporting countries - Portugal: Raquel Guiomar, Pedro Pechirra, Paula Cristovão, Inês Costa, Patrícia Conde, Baltazar Nunes, Ana RodriguesInfluenza A(H1N1)pdm09 viruses predominated in the European influenza 2015/16 season. Most analysed viruses clustered in a new genetic subclade 6B.1, antigenically similar to the northern hemisphere vaccine component A/California/7/2009. The predominant influenza B lineage was Victoria compared with Yamagata in the previous season. It remains to be evaluated at the end of the season if these changes affected the effectiveness of the vaccine for the 2015/16 season.info:eu-repo/semantics/publishedVersio

    Predominance of influenza A(H3N2) virus genetic subclade 3C.2a1 during an early 2016/17 influenza season in Europe - Contribution of surveillance data from World Health Organization (WHO) European Region to the WHO vaccine composition consultation for northern hemisphere 2017/18

    Get PDF
    Erratum to "Predominance of influenza A(H3N2) virus genetic subclade 3C.2a1 during an early 2016/17 influenza season in Europe - Contribution of surveillance data from World Health Organization (WHO) European region to the WHO vaccine composition consultation for northern hemisphere 2017/18". Vaccine. 2018 May 3;36(19):2740-2741. doi: 10.1016/j.vaccine.2017.12.039. PMID: 29274700.During the European 2016/17 influenza season, A(H3N2) viruses have predominated and the majority clustered in genetic subclade 3C.2a1. Genetic analyses showed that circulating viruses have undergone considerable genetic diversification of the haemagglutinin gene from the current vaccine virus A/Hong Kong/4801/2014 (clade 3C.2a), but the antigenic data that is limited by the challenges with the antigenic characterisation of currently circulating A(H3N2) viruses, showed no clear evidence of antigenic change. The recommended A(H3N2) vaccine component for the northern hemisphere 2017/18 influenza season remained unchanged. However, early and mid-season vaccine effectiveness (VE) estimates were suggestive of reduced VE against A(H3N2) viruses.S

    Alternating patterns of seasonal influenza activity in the WHO European Region following the 2009 pandemic, 2010-2018

    Get PDF
    Background: Influenza virus infections are common and lead to substantial morbidity and mortality worldwide. We characterized the first eight influenza epidemics since the 2009 influenza pandemic by describing the distribution of viruses and epidemics temporally and geographically across the WHO European Region. Methods: We retrospectively analyzed laboratory-confirmed influenza detections in ambulatory patients from sentinel sites. Data were aggregated by reporting entity and season (weeks 40-20) for 2010-2011 to 2017-2018. We explored geographical spread using correlation coefficients. Results: There was variation in the regional influenza epidemics during the study period. Influenza A virus subtypes alternated in dominance, except for 2013-2014 during which both cocirculated, and only one season (2017-2018) was B virus dominant. The median start week for epidemics in the Region was week 50, the time to the peak ranged between four and 13 weeks, and the duration of the epidemic ranged between 19 and 25 weeks. There was evidence of a west-to-east spread across the Region during epidemics in 2010-2011 (r = .365; P = .019), 2012-2013 (r = .484; P = .001), 2014-2015 (r = .423; P = .006), and 2017-2018 (r = .566; P < .001) seasons. Variation in virus distribution and timing existed within reporting entities across seasons and across reporting entities for a given season. Conclusions: Aggregated influenza detection data from sentinel surveillance sites by season between 2010 and 2018 have been presented for the European Region for the first time. Substantial diversity exists between influenza epidemics. These data can inform prevention and control efforts at national, sub-national, and international levels. Aggregated, regional surveillance data from early affected reporting entities may provide an early warning function and be helpful for early season forecasting efforts.WHO Regional Office for Europe was supported for work on influenza by a cooperative agreement from the United States Centers for Disease Control and Prevention (NU511P000876); the funder had no role in the analysis or interpretation of the data.S

    Influenza returns with a season dominated by clade 3C.2a1b.2a.2 A(H3N2) viruses, WHO European Region, 2021/22

    Get PDF
    In the WHO European Region, COVID-19 non-pharmaceutical interventions continued slowing influenza circulation in the 2021/22 season, with reduced characterisation data. A(H3) predominated and, in some countries, co-circulated with A(H1)pdm09 and B/Victoria viruses. No B/Yamagata virus detections were confirmed. Substantial proportions of characterised circulating virus subtypes or lineages differed antigenically from their respective northern hemisphere vaccine components. Appropriate levels of influenza virus characterisations should be maintained until the season end and in future seasons, when surveillance is adapted to integrate SARS-CoV-2.ECDC and WHO internal funds.S

    Predominance of influenza A(H3N2) virus genetic subclade 3C.2a1 during an early 2016/17 influenza season in Europe - Contribution of surveillance data from World Health Organization (WHO) European Region to the WHO vaccine composition consultation for northern hemisphere 2017/18

    No full text
    European region influenza surveillance Network author lisT - Portugal: Raquel Guiomar, Pedro Pechirra, Paula Cristóvão, Inês Costa, Patricia Conde (National Influenza and Other Respiratory Virus Reference Laboratory, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon) and Ana Paula Rodrigues (Department of Epidemiology, National Instituteof Health Dr. Ricardo Jorge, Lisbon)Erratum in: Erratum to "Predominance of influenza A(H3N2) virus genetic subclade 3C.2a1 during an early 2016/17 influenza season in Europe - Contribution of surveillance data from World Health Organization (WHO) European region to the WHO vaccine composition consultation for northern hemisphere 2017/18" [Vaccine 35 (2017) 4828-4835]. [Vaccine. 2018 May 3;36(19):2740-2741. doi: 10.1016/j.vaccine.2017.12.039. Epub 2017 Dec 20]. Disponível em: https://doi.org/10.1016/j.vaccine.2017.12.039During the European 2016/17 influenza season, A(H3N2) viruses have predominated and the majority clustered in genetic subclade 3C.2a1. Genetic analyses showed that circulating viruses have undergone considerable genetic diversification of the haemagglutinin gene from the current vaccine virus A/Hong Kong/4801/2014 (clade 3C.2a), but the antigenic data that is limited by the challenges with the antigenic characterisation of currently circulating A(H3N2) viruses, showed no clear evidence of antigenic change. The recommended A(H3N2) vaccine component for the northern hemisphere 2017/18 influenza season remained unchanged. However, early and mid-season vaccine effectiveness (VE) estimates were suggestive of reduced VE against A(H3N2) viruses.info:eu-repo/semantics/publishedVersio

    Co-circulation of influenza A(H1N1)pdm09 and influenza A(H3N2) viruses, World Health Organization (WHO) European Region, October 2018 to February 2019.

    No full text
    In the World Health Organization European Region, the 2018/19 influenza season started in week 49 2018, crossing 10% virus-positivity in sentinel surveillance specimens. At week 5 2019, activity remained elevated with positivity rates at 55%. Both A(H1N1)pdm09 and A(H3N2) viruses circulated widely and detection levels in primary care and hospital settings were similar to past seasons. Hospitalisation data may suggest an increased susceptibility to A(H1N1)pdm09 virus in older age&nbsp;groups.</p

    Predominance of influenza virus A(H3N2) 3C.2a1b and A(H1N1)pdm09 6B.1A5A genetic subclades in the WHO European Region, 2018–2019

    No full text
    BACKGROUND: The 2018/2019 influenza season in the WHO European Region was dominated by influenza A (H1N1)pdm09 and (H3N2) viruses, with very few influenza B viruses&nbsp;detected. METHODS: Countries in the European Region reported virus characterization data to The European Surveillance System for weeks 40/2018 to 20/2019. These virus antigenic and genetic characterization and haemagglutinin (HA) sequence data were analysed to describe and assess circulating viruses relative to the 2018/2019 vaccine virus components for the northern&nbsp;hemisphere. RESULTS: Thirty countries reported 4776 viruses characterized genetically and 3311 viruses antigenically. All genetically characterized A(H1N1)pdm09 viruses fell in subclade 6B.1A, of which 90% carried the amino acid substitution S183P in the HA gene. Antigenic data indicated that circulating A(H1N1)pdm09 viruses were similar to the 2018/2019 vaccine virus. Genetic data showed that A(H3N2) viruses mostly fell in clade 3C.2a (75%) and 90% of which were subclade 3C.2a1b. A lower proportion fell in clade 3C.3a (23%) and were antigenically distinct from the vaccine virus. All B/Victoria viruses belonged to clade 1A; 30% carried a double amino acid deletion in HA and were genetically and antigenically similar to the vaccine virus component, while 55% carried a triple amino acid deletion or no deletion in HA; these were antigenically distinct from each other and from the vaccine component. All B/Yamagata viruses belonged to clade 3 and were antigenically similar to the virus component in the quadrivalent vaccine for&nbsp;2018/2019. CONCLUSIONS: A simultaneous circulation of genetically and antigenically diverse A(H3N2) and B/Victoria viruses was observed and represented a challenge to vaccine strain&nbsp;selection.</p

    Predominance of influenza virus A(H3N2) 3C.2a1b and A(H1N1)pdm09 6B.1A5A genetic subclades in the WHO European Region, 2018-2019.

    No full text
    BACKGROUND: The 2018/2019 influenza season in the WHO European Region was dominated by influenza A (H1N1)pdm09 and (H3N2) viruses, with very few influenza B viruses&nbsp;detected. METHODS: Countries in the European Region reported virus characterization data to The European Surveillance System for weeks 40/2018 to 20/2019. These virus antigenic and genetic characterization and haemagglutinin (HA) sequence data were analysed to describe and assess circulating viruses relative to the 2018/2019 vaccine virus components for the northern&nbsp;hemisphere. RESULTS: Thirty countries reported 4776 viruses characterized genetically and 3311 viruses antigenically. All genetically characterized A(H1N1)pdm09 viruses fell in subclade 6B.1A, of which 90% carried the amino acid substitution S183P in the HA gene. Antigenic data indicated that circulating A(H1N1)pdm09 viruses were similar to the 2018/2019 vaccine virus. Genetic data showed that A(H3N2) viruses mostly fell in clade 3C.2a (75%) and 90% of which were subclade 3C.2a1b. A lower proportion fell in clade 3C.3a (23%) and were antigenically distinct from the vaccine virus. All B/Victoria viruses belonged to clade 1A; 30% carried a double amino acid deletion in HA and were genetically and antigenically similar to the vaccine virus component, while 55% carried a triple amino acid deletion or no deletion in HA; these were antigenically distinct from each other and from the vaccine component. All B/Yamagata viruses belonged to clade 3 and were antigenically similar to the virus component in the quadrivalent vaccine for&nbsp;2018/2019. CONCLUSIONS: A simultaneous circulation of genetically and antigenically diverse A(H3N2) and B/Victoria viruses was observed and represented a challenge to vaccine strain&nbsp;selection.</p
    corecore