145 research outputs found

    Genetic divergence of rubber tree estimated by multivariate techniques and microsatellite markers

    Get PDF
    Genetic diversity of 60 Hevea genotypes, consisting of Asiatic, Amazonian, African and IAC clones, and pertaining to the genetic breeding program of the Agronomic Institute (IAC), Brazil, was estimated. Analyses were based on phenotypic multivariate parameters and microsatellites. Five agronomic descriptors were employed in multivariate procedures, such as Standard Euclidian Distance, Tocher clustering and principal component analysis. Genetic variability among the genotypes was estimated with 68 selected polymorphic SSRs, by way of Modified Rogers Genetic Distance and UPGMA clustering. Structure software in a Bayesian approach was used in discriminating among groups. Genetic diversity was estimated through Nei's statistics. The genotypes were clustered into 12 groups according to the Tocher method, while the molecular analysis identified six groups. In the phenotypic and microsatellite analyses, the Amazonian and IAC genotypes were distributed in several groups, whereas the Asiatic were in only a few. Observed heterozygosity ranged from 0.05 to 0.96. Both high total diversity (HT' = 0.58) and high gene differentiation (G st' = 0.61) were observed, and indicated high genetic variation among the 60 genotypes, which may be useful for breeding programs. The analyzed agronomic parameters and SSRs markers were effective in assessing genetic diversity among Hevea genotypes, besides proving to be useful for characterizing genetic variability

    Screening and identification of seed-specific genes using digital differential display tools combined with microarray data from common wheat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wheat is one of the most important cereal crops for human beings, with seeds being the tissue of highly economic value. Various morphogenetic and metabolic processes are exclusively associated with seed maturation. The goal of this study was to screen and identify genes specifically expressed in the developing seed of wheat with an integrative utilization of digital differential display (DDD) and available online microarray databases.</p> <p>Results</p> <p>A total of 201 unigenes were identified as the results of DDD screening and microarray database searching. The expressions of 6 of these were shown to be seed-specific by qRT-PCR analysis. Further GO enrichment analysis indicated that seed-specific genes were mainly associated with defense response, response to stress, multi-organism process, pathogenesis, extracellular region, nutrient reservoir activity, enzyme inhibitor activity, antioxidant activity and oxidoreductase activity. A comparison of this set of genes with the rice (<it>Oryza sativa</it>) genome was also performed and approximately three-fifths of them have rice counterparts. Between the counterparts, around 63% showed similar expression patterns according to the microarray data.</p> <p>Conclusions</p> <p>In conclusion, the DDD screening combined with microarray data analysis is an effective strategy for the identification of seed-specific expressed genes in wheat. These seed-specific genes screened during this study will provide valuable information for further studies about the functions of these genes in wheat.</p

    Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat

    Get PDF
    A rye–wheat centric chromosome translocation 1RS.1BL has been widely used in wheat breeding programs around the world. Increased yield of translocation lines was probably a consequence of increased root biomass. In an effort to map loci-controlling root characteristics, homoeologous recombinants of 1RS with 1BS were used to generate a consensus genetic map comprised of 20 phenotypic and molecular markers, with an average spacing of 2.5 cM. Physically, all recombination events were located in the distal 40% of the arms. A total of 68 recombinants was used and recombination breakpoints were aligned and ordered over map intervals with all the markers, integrated together in a genetic map. This approach enabled dissection of genetic components of quantitative traits, such as root traits, present on 1S. To validate our hypothesis, phenotyping of 45-day-old wheat roots was performed in five lines including three recombinants representative of the entire short arm along with bread wheat parents ‘Pavon 76’ and Pavon 1RS.1BL. Individual root characteristics were ranked and the genotypic rank sums were subjected to Quade analysis to compare the overall rooting ability of the genotypes. It appears that the terminal 15% of the rye 1RS arm carries gene(s) for greater rooting ability in wheat

    Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lentil (<it>Lens culinaris </it>Medik.) is a cool-season grain legume which provides a rich source of protein for human consumption. In terms of genomic resources, lentil is relatively underdeveloped, in comparison to other Fabaceae species, with limited available data. There is hence a significant need to enhance such resources in order to identify novel genes and alleles for molecular breeding to increase crop productivity and quality.</p> <p>Results</p> <p>Tissue-specific cDNA samples from six distinct lentil genotypes were sequenced using Roche 454 GS-FLX Titanium technology, generating c. 1.38 × 10<sup>6 </sup>expressed sequence tags (ESTs). <it>De novo </it>assembly generated a total of 15,354 contigs and 68,715 singletons. The complete unigene set was sequence-analysed against genome drafts of the model legume species <it>Medicago truncatula </it>and <it>Arabidopsis thaliana </it>to identify 12,639, and 7,476 unique matches, respectively. When compared to the genome of <it>Glycine max</it>, a total of 20,419 unique hits were observed corresponding to c. 31% of the known gene space. A total of 25,592 lentil unigenes were subsequently annoated from GenBank. Simple sequence repeat (SSR)-containing ESTs were identified from consensus sequences and a total of 2,393 primer pairs were designed. A subset of 192 EST-SSR markers was screened for validation across a panel 12 cultivated lentil genotypes and one wild relative species. A total of 166 primer pairs obtained successful amplification, of which 47.5% detected genetic polymorphism.</p> <p>Conclusions</p> <p>A substantial collection of ESTs has been developed from sequence analysis of lentil genotypes using second-generation technology, permitting unigene definition across a broad range of functional categories. As well as providing resources for functional genomics studies, the unigene set has permitted significant enhancement of the number of publicly-available molecular genetic markers as tools for improvement of this species.</p

    Mining and validating grape (Vitis L.) ESTs to develop EST-SSR markers for genotyping and mapping

    Get PDF
    Grape expressed sequence tags (ESTs) are a new resource for developing simple sequence repeat (SSR) functional markers for genotyping and genetic mapping. An integrated pipeline including several computational tools for SSR identification and functional annotation was developed to identify 6,447 EST-SSR sequences from a total collection of 215,609 grape ESTs retrieved from NCBI. The 6,447 EST-SSRs were further reduced to 1,701 non-redundant sequences via clustering analysis, and 1,037 of them were successfully designed with primer pairs flanking the SSR motifs. From them, 150 pairs of primers were randomly selected for PCR amplification, polymorphism and heterozygosity analysis in V. vinifera cvs. Riesling and Cabernet Sauvignon, and V. rotundifolia (muscadine grape) cvs. Summit and Noble, and 145 pairs of these primers yielded PCR products. Pairwise comparisons of loci between the parents Riesling and Cabernet Sauvignon showed that 72 were homozygous in both cultivars, while 70 loci were heterozygous in at least one cultivar of the two. Muscadine parents Noble and Summit had 90 homozygous SSR loci in both parents and contained 50 heterozygous loci in at least one of the two. These EST-SSR functional markers are a useful addition for grape genotyping and genome mapping

    Tetraploid Wheat Landraces in the Mediterranean Basin: Taxonomy, Evolution and Genetic Diversity

    Get PDF
    The geographic distribution of genetic diversity and the population structure of tetraploid wheat landraces in the Mediterranean basin has received relatively little attention. This is complicated by the lack of consensus concerning the taxonomy of tetraploid wheats and by unresolved questions regarding the domestication and spread of naked wheats. These knowledge gaps hinder crop diversity conservation efforts and plant breeding programmes. We investigated genetic diversity and population structure in tetraploid wheats (wild emmer, emmer, rivet and durum) using nuclear and chloroplast simple sequence repeats, functional variations and insertion site-based polymorphisms. Emmer and wild emmer constitute a genetically distinct population from durum and rivet, the latter seeming to share a common gene pool. Our population structure and genetic diversity data suggest a dynamic history of introduction and extinction of genotypes in the Mediterranean fields

    Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa

    Get PDF
    Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC(1)F(1) plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs

    Genetic Structure of Modern Durum Wheat Cultivars and Mediterranean Landraces Matches with Their Agronomic Performance

    Get PDF
    A collection of 172 durum wheat landraces from 21 Mediterranean countries and 20 modern cultivars were phenotyped in 6 environments for 14 traits including phenology, biomass, yield and yield components. The genetic structure of the collection was ascertained with 44 simple sequence repeat markers that identified 448 alleles, 226 of them with a frequency lower than 5%, and 10 alleles per locus on average. In the modern cultivars all the alleles were fixed in 59% of the markers. Total genetic diversity was HT = 0.7080 and the genetic differentiation value was GST = 0.1730. STRUCTURE software allocated 90.1% of the accessions in five subpopulations, one including all modern cultivars, and the four containing landrace related to their geographic origin: eastern Mediterranean, eastern Balkans and Turkey, western Balkans and Egypt, and western Mediterranean. Mean yield of subpopulations ranged from 2.6 t ha-1 for the western Balkan and Egyptian landraces to 4.0 t ha-1 for modern cultivars, with the remaining three subpopulations showing similar values of 3.1 t ha-1. Modern cultivars had the highest number of grains m-2 and harvest index, and the shortest cycle length. The diversity was lowest in modern cultivars (HT = 0.4835) and highest in landraces from the western Balkans and Egypt (HT = 0.6979). Genetic diversity and AMOVA indicated that variability between subpopulations was much lower (17%) than variability within them (83%), though all subpopulations had similar biomass values in all growth stages. A dendrogram based on simple sequence repeat data matched with the clusters obtained by STRUCTURE, improving this classification for some accessions that have a large admixture. landraces included in the subpopulation from the eastern Balkans and Turkey were separated into two branches in the dendrogram drawn with phenotypic data, suggesting a different origin for the landraces collected in Serbia and Macedonia. The current study shows a reliable relationship between genetic and phenotypic population structures, and the connection of both with the geographic origin of the landraces.The research was funded by the Ministerio de Economía y competitividad project AGL-2006-09226-C02-01, and Dr. Jose Miguel Soriano is funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (http://www.mineco.gob.es/)

    Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sesame is an important oil crop, but limited transcriptomic and genomic data are currently available. This information is essential to clarify the fatty acid and lignan biosynthesis molecular mechanism. In addition, a shortage of sesame molecular markers limits the efficiency and accuracy of genetic breeding. High-throughput transcriptomic sequencing is essential to generate a large transcriptome sequence dataset for gene discovery and molecular marker development.</p> <p>Results</p> <p>Sesame transcriptomes from five tissues were sequenced using Illumina paired-end sequencing technology. The cleaned raw reads were assembled into a total of 86,222 unigenes with an average length of 629 bp. Of the unigenes, 46,584 (54.03%) had significant similarity with proteins in the NCBI nonredundant protein database and Swiss-Prot database (E-value < 10<sup>-5</sup>). Of these annotated unigenes, 10,805 and 27,588 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. In total, 22,003 (25.52%) unigenes were mapped onto 119 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Furthermore, 44,750 unigenes showed homology to 15,460 <it>Arabidopsis </it>genes based on BLASTx analysis against The Arabidopsis Information Resource (TAIR, Version 10) and revealed relatively high gene coverage. In total, 7,702 unigenes were converted into SSR markers (EST-SSR). Dinucleotide SSRs were the dominant repeat motif (67.07%, 5,166), followed by trinucleotide (24.89%, 1,917), tetranucleotide (4.31%, 332), hexanucleotide (2.62%, 202), and pentanucleotide (1.10%, 85) SSRs. AG/CT (46.29%) was the dominant repeat motif, followed by AC/GT (16.07%), AT/AT (10.53%), AAG/CTT (6.23%), and AGG/CCT (3.39%). Fifty EST-SSRs were randomly selected to validate amplification and to determine the degree of polymorphism in the genomic DNA pools. Forty primer pairs successfully amplified DNA fragments and detected significant amounts of polymorphism among 24 sesame accessions.</p> <p>Conclusions</p> <p>This study demonstrates that Illumina paired-end sequencing is a fast and cost-effective approach to gene discovery and molecular marker development in non-model organisms. Our results provide a comprehensive sequence resource for sesame research.</p
    corecore