834 research outputs found

    Chandra constraints on the thermal conduction in the intracluster plasma of A2142

    Get PDF
    In this Letter, we use the recent Chandra observation of A2142 reported by Markevitch et al. to put constraints on thermal conduction in the intracluster plasma. We show that the observed sharp temperature gradient requires that classical conductivity has to be reduced at least by a factor of between 250 and 2500. The result provides a direct constraint on an important physical process relevant to the gas in the cores of clusters of galaxies.Comment: 3 pages. To appear in MNRA

    X-ray and Sunyaev-Zel'dovich scaling relations in galaxy clusters

    Full text link
    [Abridged] We present an analysis of the scaling relations between X-ray properties and Sunyaev-Zel'dovich (SZ) parameters for a sample of 24 X-ray luminous galaxy clusters observed with Chandra and with measured SZ effect. These objects are in the redshift range 0.14--0.82 and have X-ray bolometric luminosity L>10^45 erg/s. We perform a spatially resolved spectral analysis and recover the density, temperature and pressure profiles of the ICM, just relying on the spherical symmetry of the cluster and the hydrostatic equilibrium hypothesis. We observe that the correlations among X-ray quantities only are in agreement with previous results obtained for samples of high-z X-ray luminous galaxy clusters. On the relations involving SZ quantities, we obtain that they correlate with the gas temperature with a logarithmic slope significantly larger than the predicted value from the self-similar model. The measured scatter indicates, however, that the central Compton parameter y_0 is a proxy of the gas temperature at the same level of other X-ray quantities like luminosity. Our results on the X-ray and SZ scaling relations show a tension between the quantities more related to the global energy of the system (e.g. gas temperature, gravitating mass) and the indicators of the structure of the ICM (e.g. gas density profile, central Compton parameter y_0), showing the most significant deviations from the values of the slope predicted from the self-similar model in the L-T, L-M_{tot}, M_{gas}-T, y_0-T relations. When the slope is fixed to the self-similar value, these relations consistently show a negative evolution suggesting a scenario in which the ICM at higher redshift has lower both X-ray luminosity and pressure in the central regions than the expectations from self-similar model.Comment: MNRAS in press - Minor revision to match published versio

    The outer regions of galaxy clusters: Chandra constraints on the X-ray surface brightness

    Full text link
    (Abridged version) We study the properties of the X-ray surface brightness profiles in a sample of galaxy clusters that were observed with Chandra and have emission detectable with a signal-to-noise ratio higher than 2 at a radius beyond R500 ~ 0.7 R200. Our study aims to measure the slopes of the X-ray surface brightness and of the gas density profiles in the outskirts of massive clusters. These constraints are compared to similar results obtained from observations and numerical simulations of the temperature and dark matter density profiles with the intention of presenting a consistent picture of the outer regions of galaxy clusters. We extract the surface brightness profiles Sb(r) of 52 X-ray luminous galaxy clusters at z>0.3 from X-ray exposures obtained with Chandra. We estimate R200 using both a beta-model that reproduces Sb(r) and scaling relations from the literature. The two methods converge to comparable values. We determine the radius, R_S2N, at which the signal-to-noise ratio is larger than 2 and select the objects in the sample that satisfy the criterion R_S2N/R200 > 0.7. For the eleven selected objects, we model with a power-law the behaviour of Sb(r). We measure a consistent steepening of the Sb(r) profile moving outward from 0.4 R200, where an average slope of -3.6 (sigma=0.8) is estimated. At R200, we evaluate a slope of -4.3 (sigma=0.9) that implies a slope in the gas density profile of -2.6 and a predicted mean value of the surface brightness in the 0.5-2 band of 2e-12 erg/s/cm2/deg2. Combined with estimates of the outer slope of the gas temperature profile and expectations about the dark matter distribution, these measurements allow us to describe properly how X-ray luminous clusters behave out to the virial radius.Comment: 7 pages. A&A in press. Minor revisions to match published version: added references, corrected typo

    Chandra detection of reflected X-ray emission from the type 2 QSO in IRAS 09104+4109

    Get PDF
    We present X-ray imaging spectroscopy of the extremely luminous infrared galaxy IRAS 09104+4109 (z=0.442) obtained with the Chandra X-ray Observatory. With the arcsec resolution of Chandra, an unresolved source at the nucleus is separated from the surrounding cluster emission. A strong iron K line at 6.4 keV on a very hard continuum is detected from the nuclear source, rendering IRAS 09104+4109 the most distant reflection-dominated X-ray source known. Combined with the BeppoSAX detection of the excess hard X-ray emission, it provides further strong support to the presence of a hidden X-ray source of quasar luminosity in this infrared galaxy. Also seen is a faint linear structure to the North, which coincides with the main radio jet. An X-ray deficit in the corresponding region suggests an interaction between the cluster medium and the jet driven by the active nucleus.Comment: 5 pages, accepted for publication as a Letter in MNRA

    The baryon fraction in hydrodynamical simulations of galaxy clusters

    Full text link
    We study the baryon mass fraction in a set of hydrodynamical simulations of galaxy clusters performed using the Tree+SPH code GADGET-2. We investigate the dependence of the baryon fraction upon the radiative cooling, star formation, feedback through galactic winds, conduction and redshift. Both the cold stellar component and the hot X-ray emitting gas have narrow distributions that, at large cluster-centric distances r>R500, are nearly independent of the physics included in the simulations. Only the non-radiative runs reproduce the gas fraction inferred from observations of the inner regions (r ~ R2500) of massive clusters. When cooling is turned on, the excess star formation is mitigated by the action of galactic winds, but yet not by the amount required by observational data. The baryon fraction within a fixed overdensity increases slightly with redshift, independent of the physical processes involved in the accumulation of baryons in the cluster potential well. In runs with cooling and feedback, the increase in baryons is associated with a larger stellar mass fraction that arises at high redshift as a consequence of more efficient gas cooling. For the same reason, the gas fraction appears less concentrated at higher redshift. We discuss the possible cosmological implications of our results and find that two assumptions generally adopted, (1) mean value of Yb = fb / (Omega_b/Omega_m) not evolving with redshift, and (2) a fixed ratio between f_star and f_gas independent of radius and redshift, might not be valid. In the estimate of the cosmic matter density parameter, this implies some systematic effects of the order of Delta Omega_m/Omega_m < +0.15 for non-radiative runs and Delta Omega_m/Omega_m ~ +0.05 and < -0.05 for radiative simulations.Comment: 10 pages, to appear in MNRA

    The physics inside the scaling relations for X-ray galaxy clusters: gas clumpiness, gas mass fraction and slope of the pressure profile

    Get PDF
    In galaxy clusters, the relations between observables in X-ray and millimeter wave bands and the total mass have normalizations, slopes and redshift evolutions that are simple to estimate in a self-similar scenario. We study these scaling relations and show that they can be efficiently expressed, in a more coherent picture, by fixing the normalizations and slopes to the self-similar predictions, and advocating, as responsible of the observed deviations, only three physical mass-dependent quantities: the gas clumpiness CC, the gas mass fraction fgf_g and the logarithmic slope of the thermal pressure profile βP\beta_P. We use samples of the observed gas masses, temperature, luminosities, and Compton parameters in local clusters to constrain normalization and mass dependence of these 3 physical quantities, and measure: C0.5fg=0.110(±0.002±0.002)(EzM/5×1014M)0.198(±0.025±0.04)C^{0.5} f_g = 0.110 (\pm 0.002 \pm 0.002) \left( E_z M / 5 \times 10^{14} M_{\odot} \right)^{0.198 (\pm 0.025 \pm 0.04)} and βP=dlnP/dlnr=3.14(±0.04±0.02)(EzM/5×1014M)0.071(±0.012±0.004)\beta_P = -d \ln P/d \ln r = 3.14 (\pm 0.04 \pm 0.02) \left( E_z M / 5 \times 10^{14} M_{\odot} \right)^{0.071 (\pm 0.012 \pm 0.004)}, where both a statistical and systematic error (the latter mainly due to the cross-calibration uncertainties affecting the \cxo\ and \xmm\ results used in the present analysis) are quoted. The degeneracy between CC and fgf_g is broken by using the estimates of the Compton parameters. Together with the self-similar predictions, these estimates on CC, fgf_g and βP\beta_P define an inter-correlated internally-consistent set of scaling relations that reproduces the mass estimates with the lowest residuals.Comment: 11 pages, 4 figures. MNRAS in pres

    Can giant radio halos probe the merging rate of galaxy clusters?

    Get PDF
    Radio and X-ray observations of galaxy clusters probe a direct link between cluster mergers and giant radio halos (RH), suggesting that these sources can be used as probes of the cluster merging rate with cosmic time. In this paper we carry out an explorative study that combines the observed fractions of merging clusters (fm) and RH (fRH) with the merging rate predicted by cosmological simulations and attempt to infer constraints on merger properties of clusters that appear disturbed in X-rays and of clusters with RH. We use morphological parameters to identify merging systems and analyze the currently largest sample of clusters with radio and X-ray data (M500>6d14 Msun, and 0.2<z<0.33, from the Planck SZ cluster catalogue). We found that in this sample fm~62-67% while fRH~44-51%. The comparison of the theoretical f_m with the observed one allows to constrain the combination (xi_m,tau_m), where xi_m and tau_m are the minimum merger mass ratio and the timescale of merger-induced disturbance. Assuming tau_m~ 2-3 Gyr, as constrained by simulations, we find that the observed f_m matches the theoretical one for xi_m~0.1-0.18. This is consistent with optical and near-IR observations of clusters in the sample (xi_m~0.14-0.16). The fact that RH are found only in a fraction of merging clusters may suggest that merger events generating RH are characterized by larger mass ratio; this seems supported by optical/near-IR observations of RH clusters in the sample (xi_min~0.2-0.25). Alternatively, RH may be generated in all mergers but their lifetime is shorter than \tau_m (by ~ fRH/fm). This is an explorative study, however it suggests that follow up studies using the forthcoming radio surveys and adequate numerical simulations have the potential to derive quantitative constraints on the link between cluster merging rate and RH at different cosmic epochs and for different cluster masses.Comment: 10 pages, 3 figures, accepted for publication in A&
    corecore