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ABSTRACT
In galaxy clusters, the relations between observables in X-ray and millimetre wave bands
and the total mass have normalizations, slopes and redshift evolutions that are simple to
estimate in a self-similar scenario. We study these scaling relations and show that they
can be efficiently expressed, in a more coherent picture, by fixing the normalizations and
slopes to the self-similar predictions, and advocating, as responsible of the observed devi-
ations, only three physical mass-dependent quantities: the gas clumpiness C, the gas mass
fraction fg and the logarithmic slope of the thermal pressure profile βP. We use samples
of the observed gas masses, temperature, luminosities and Compton parameters in local
clusters to constrain normalization and mass dependence of these three physical quantities,
and measure C0.5fg = 0.110( ± 0.002 ± 0.002)(EzM/5 × 1014 M�)0.198( ± 0.025 ± 0.04) and
βP = −dln P/dln r = 3.14( ± 0.04 ± 0.02)(EzM/5 × 1014 M�)0.071( ± 0.012 ± 0.004), where both
a statistical and systematic error (the latter mainly due to the cross-calibration uncertainties
affecting the Chandra and XMM–Newton results used in the present analysis) are quoted. The
degeneracy between C and fg is broken by using the estimates of the Compton parameters.
Together with the self-similar predictions, these estimates on C, fg and βP define an intercor-
related internally consistent set of scaling relations that reproduces the mass estimates with
the lowest residuals.

Key words: galaxies: clusters: general – cosmology: miscellaneous – X-rays: galaxies:
clusters.

1 IN T RO D U C T I O N

To use galaxy clusters as probes of the background Universe in
which they form and evolve is essential to link some of their ob-
served properties in the electromagnetic spectrum to their gravita-
tional potential (see e.g. Allen, Evrard & Mantz 2011; Kravtsov &
Borgani 2012). Many proxies at different wavelengths, from radio
to X-ray band, are nowadays available and robustly determined.
Some attempts are already started to combine few of these proxies
to improve the constraints on the inferred mass (e.g. Okabe et al.
2010; Stanek et al. 2010; Ettori et al. 2012; Ettori 2013; Evrard et al.
2014; Maughan 2014; Rozo et al. 2014).

In this work, we focus on the intracluster medium (ICM), the
hot fully ionized optically thin plasma that collapses into the cluster
gravitational potential. The physical processes occurring in the ICM
can be mapped both with the X-rays, produced via bremsstrahlung
radiation (e.g. Böhringer & Werner 2010) and through the Sunyaev–

� E-mail: stefano.ettori@oabo.inaf.it

Zeldovich (hereafter SZ) effect, that traces the Compton scattering
of the photons of the cosmic microwave background on the electrons
of the same plasma (Sunyaev & Zeldovich 1980).

In particular, we consider the scaling relations between cluster
masses and the X-ray/SZ observables (see Giodini et al. 2013, for
a recent review on this topic). We obtain, first, the analytic expres-
sions that relate gas mass, temperature, luminosity and Compton
parameter to the total mass and, then, we show that these relations,
with the normalizations and slopes fixed to the analytic values, can
be used more efficiently to estimate the total mass, once a set of
three physically motivated quantities are defined also in their mass
dependence.

The paper is organized as follows. In Section 2, we introduce the
scaling relations considered for our analysis, providing a numeri-
cal value for the normalization that depends just on three unknown
quantities, i.e. the average gas clumpiness, the cluster gas mass
fraction and the slope of the gas pressure profile. In Section 3, we
describe how we can calibrate the investigated scaling relations by
using the largest sample available of hydrostatic mass measure-
ments. In Section 4, we summarize our main findings. Hereafter,
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2630 S. Ettori

all the physical quantities considered refer to the cosmological pa-
rameters H0 = 70 km s−1 Mpc−1 and �m = 1 − �� = 0.3, unless
stated otherwise.

2 TH E X - R AY A N D S Z S C A L I N G LAW S FO R
THE TOTAL MASS

For a galaxy cluster in hydrostatic equilibrium, the radial profile of
the total mass is described by the equation (e.g. Ettori et al. 2013)

M(< R) ≡ M = −R T (R)

μmpG

d ln P

d ln r
= R T fT βP

μmpG
, (1)

where βP = −dln P/dln r > 0 is the opposite of the logarithmic
slope of the gas pressure profile, and fT = T(R)/T is defined as the
ratio between the 3D value of the gas temperature at the radius R
and the mean spectroscopic estimate T, which will appear in the
scaling relations.

Studies of the properties of the self-similar scaling scenario have
shown to be more convenient to refer to cluster’s regions defined
with respect to a fixed overdensity when haloes with different
masses and redshifts are considered (e.g. Böhringer, Dolag & Chon
2012). In our analysis, we consider physical quantities estimated
within a radius R�, which defines a spherical region where the mean
mass overdensity � is evaluated with respect to the critical den-
sity of the Universe at the cluster’s redshift z, ρc,z = 3H 2

z /(8πG):
� = 3M/(4πρc,zR

3
�) = 2 GM/(H 2

z R3
�), where the Hubble con-

stant Hz = H0Ez includes the factor describing its cosmic evolution
Ez = [�m(1 + z)3 + 1 − �m]1/2 for a flat cosmology with matter
density parameter �m.

We assume

(i) a gas mass fraction fg = Mg/M;
(ii) that the X-ray emission is mostly due to bremsstrahlung

processes so that the bolometric luminosity L ≡ Lbol =∫
nenp�(T )dV = fLM2

g cf/(μ2
em

2
amuV ), where V = 4/3πR3

� is the
cluster volume; fL = ∫

n2
gdV /(

∫
ngdV )2 V is the correction needed

to consider the gas mass (
∫

ngdV) instead of the emission integral
(
∫

n2
gdV ) for the scaling purpose and is equal to 1.80 for a gas

density distribution described by a β-model with β = 0.65 and
R500 = 5 × the core radius, that are the median values of the esti-
mated parameters in the sample of the brightest 45 nearby galaxy
clusters in Mohr, Mathiesen & Evrard (1999);1 the cooling function
cf is equal to cf,0 × T 0.5

keV erg s−1 cm3, with cf, 0 = 0.85 × 10−23cpe

(this value is completely consistent with, e.g., Sutherland & Do-
pita 1993 as tabulated in Tozzi & Norman 2001);2 a conversion
factor from protons to electrons cpe = 1.1995, an electronic weight
μe = 1.1738 and an atomic mass mamu = 1.66 × 10−24 g are used;

1 Using the extremes of the inter-quartile ranges of the estimated values of β

and R500 in the Mohr et al. sample, we estimate the variations on fL between
−15 and +29 per cent, and, through the dependence to the power of −3/4,
on the quoted normalization of the M–L relation between −17 and +13 per
cent.
2 The normalization of the cooling function is estimated by fitting a function
cT0.5 to the values of the cooling function evaluated with the thermal model
apec in XSPEC (Arnaud 1996) where a metallicity of 0.3 times the solar
abundance as tabulated in Anders & Grevesse (1989) and a set of temperature
between 2 and 12 keV are considered; adopting a metallicity of 0.1 decreases
the normalization of cf by 5 per cent; the difference is −6 per cent when a
metallicity of 0.3 and the more recent table of solar abundance from Asplund
et al. (2009) are considered.

(iii) that the millimetre wave emission is due to the SZ effect
which is proportional to the integrated pressure of the X-ray emit-
ting plasma along the line of sight and is described from the in-
tegrated Compton parameter YSZD2

A = (σT/mec
2)

∫
P dV , where

DA is the angular distance to the cluster, σT = 8π/3(e2/mec
2)2 =

6.65 × 10−25 cm2 is the Thompson cross-section, me and e are the
electron rest mass and charge, respectively, c is the speed of light
and P = neT is the electron pressure profile.

We can write the following scaling laws with their calculated
normalization

FzM

5 × 1014 M�

= 1.0

(
C0.5 fg

0.1

)−1
FzMg

5 × 1013 M�

= 0.832

(
βP

3

)3/2 (
kT

5keV

)3/2

= 0.962

(
βP

3

)3/8 (
C0.5 fg

0.1

)−3/2 (
F−1

z L

5 × 1044 erg s−1

)3/4

= 1.748

(
βP

3

)3/5 (
fg

0.1

)−3/5 (
FzYSZD2

A

10−4 Mpc2

)3/5

. (2)

Here, we define Fz = Ez × (�/500)0.5 (see e.g. Ettori et al. 2004);
the clumpiness in the gas density C = 〈n2

g〉/〈ng〉2 that affects the
measurement of the gas density as obtained from the deprojection of
the X-ray data produced from free–free emission, but not from SZ
signal due to inverse Compton (see e.g. Eckert et al. 2013a,b; Ron-
carelli et al. 2013); the mean atomic weight μ = 0.61. As reference
values, we adopt an overdensity of � = 500 (and therefore Fz = Ez),
for which fT ≈ 0.67 (e.g. Vikhlinin et al. 2006; Baldi et al. 2012); a
gas fraction of 0.1 (see e.g. Ettori et al. 2009; Mantz et al. 2014); a
logarithmic slope of the gas pressure profile at R500 of −3, which is
consistent with the values in the range ( − 3.2, −2.8) of the profiles
adopted in Arnaud et al. (2010) and in the papers of the Planck
Intermediate Results V (2013). We refer to the appendix for further
details on how the normalizations are estimated (Appendix A) and
to the extension of the M–L relation to no-bolometric energy bands
(Appendix B).

Following Ettori (2013, hereafter E13), where a generalized form
for the scaling laws has been presented, a concise form of all the set
of the above equations can be written as

FzM ∼ βθ
Pf −φ

g (F−1
z L)α(FzMg)βT γ (3)

where the relations

4α +3β + 2γ = 3

θ = α/2 + γ

φ = 2α + β (4)

among the exponents hold in a self-similar scenario (e.g. the M–T
relation is recovered by imposing the absence of any dependence
on Mg and L, i.e. α = β = 0; then γ = 3/2, θ = γ = 3/2 and
φ = 0), and YSZ is here represented as the product of gas mass and
temperature.

MNRAS 446, 2629–2639 (2015)
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Figure 1. Left: comparison between our collection of hydrostatic masses (S09 = Sun et al. 2009; P09 = Pratt et al. 2009; R11 = Reichert et al. 2011;
M13 = Mahdavi et al. 2013; M14 = Maughan 2014) and MYX

as estimated in Planck Collaboration XXIX (2014). Right: median values (with the lower and
upper quartile) of the ratios M/MYX

for the whole sample (black), in four different mass bins (green) and for the different considered data sets.

3 TH E C A L I B R AT I O N O F T H E SC A L I N G
R E L AT I O N S

To check the consistency between the normalizations in equation
(2) and the observed distributions, we consider X-ray mass esti-
mates obtained through the application of the equation of the hy-
drostatic equilibrium under the assumptions that any gas velocity
is zero and that the ICM is distributed in a spherically symmetric
way into the cluster gravitational potential (see e.g. Ettori et al.
2013). We start with the sample described in E13 [120 entries,
113 of which are unique hydrostatic mass measurements collected
from the public catalogues in Sun et al. (2009), Pratt et al. (2009),3

Mahdavi et al. (2013) and Maughan (2014)] and add the 110 (out
of 232) objects present in the Reichert et al. (2011) sample and
not considered in E13, for a total number of 213 galaxy clusters
with reliable hydrostatic masses estimated at � = 500. Using this
sample, we investigate, as described below, the normalization and
slope of the M–T relation (213 objects), M–L relation (199 objects)
and M–Mgas relation (113 objects). Then, we consider the Planck
catalogue (file COM_PCCS_SZ-validation_R1.13.fits available
at http://www.sciops.esa.int/index.php?page =Planck_Legacy_
Archive&project=planck; see Planck Collaboration XXIX 2014)
with 1227 entries, 455 of which with estimated redshift and YSZ ≡
Y500, PSX > 0. We obtain that 94 are the systems in common between
the 213 galaxy cluster with hydrostatic masses and the 455 Planck
clusters. In the published catalogue, also estimates of the mass, MYX

,
obtained through the YX = MgT parameter (e.g. Kravtsov, Vikhlinin
& Nagai 2006; Arnaud et al. 2010) are provided. For the 94 objects

3 The masses derived in Pratt et al. (2009) for the objects in the REXCESS
sample are not obtained from the equation of the hydrostatic equilibrium,
but are estimated from the YX( = MgT)–M relation as calibrated in Arnaud,
Pointecouteau & Pratt (2007). We consider them in our sample for the wealth
of information associated with the REXCESS catalogue.

in common, we calculate the ratio between the collected values of
the hydrostatic mass and MYX

. We obtain overall perfect agreement
(median value: 0.99). On the other hand, we also notice a clear
bias depending on the total hydrostatic mass, with systems at lower
(<3 × 1014 M�) and higher (>7 × 1014 M�) masses showing the
highest deviations (median values of 1.37 and 0.74, respectively;
see Fig. 1), indicating that the collected hydrostatic estimates over
(under) predict the high (low) values of MYX

.
The main properties of the sample here analysed are listed in

Table 1.
We fit these quantities using the linear function

Y = n + aX (5)

and minimizing the merit function

χ2 =
N∑

i=1

(Yi − n − aXi)2

ε2
i

ε2
i = ε2

Y,i + a2ε2
X ,i − 2 a ρ εY,i εX ,i , (6)

where Y = log

(
Fz M

5×1014 M�
)

,X = log(X) and X is equal to

Fz Mg

5×1013 M� , T
5 keV , F−1

z Lbol

5×1044 erg s−1 ,
FzYSZD2

A
10−4 Mpc2 ; ‘log ’ indicates the base-

10 logarithm; the associated errors εY and εX are obtained through
the propagation of the measured uncertainties; N is the number of
data points and D = N − p are the degrees of freedom given a
number p of fitted parameters (either 2 – slope and normalization
– or the normalization only); ρ is the Pearson’s correlation coeffi-
cient among the variables Y and X . An intrinsic scatter is estimated
by adding it in quadrature to εi and re-iterating the fitting proce-
dure until a reduced χ2 of 1 is obtained. The relative error on it is
obtained as discussed in E13. The fit is performed using the IDL

routine MPFIT (Markwardt 2008).
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2632 S. Ettori

Table 1. Properties of the multiwavelength samples considered in the present analysis. In the
columns M and X, the median value, the range covered (in parentheses) and the relative error of
the mass and the investigate observable, respectively, are quoted. The units for the observables
X are 1013 M� for Mg, keV for T, 1044 erg s1 for L and D2

A104 Mpc−2 for YSZ.

Sample N z M X
(1014 M�)

All M 213 0.226 (0.012–1.390) 3.51 (0.15–22.80); 0.19 –
M–Mg 109 0.141 (0.012–0.550) 3.15 (0.15–14.52); 0.19 3.91 (0.08–26.7); 0.09
M–T 213 0.226 (0.012–1.390) 3.51 (0.15–22.80); 0.19 5.30 (0.81–12.5); 0.07
M–L 199 0.231 (0.012–1.390) 3.52 (0.15–22.80); 0.20 6.80 (0.02–118.2); 0.04
M−YSZ 94 0.176 (0.048–0.548) 5.99 (0.98–14.52); 0.19 0.66 (0.06–3.8); 0.14

Although we provide all the calculations needed to investigate
the evolution with redshift of the scaling relations, we prefer not to
study it in the present work because of the heterogeneous origin of
the considered data set that, without a proper weight provided from
a redshift-dependent selection function, could affect any conclusion
on the redshift evolution.

3.1 A mass-dependent deviation from self-similarity

Since the first evidence of the deviations of the observed slopes
of the X-ray scaling laws from the self-similar expectations, it has
been suggested that a possible solution to reconcile the predicted and
observed values can be obtained by assuming that at least one of the
physical quantities (like, e.g., the gas mass fraction) appearing in the
derivation of the scaling law has a not-negligible mass dependence
(see e.g. Arnaud & Evrard 1999; Pratt et al. 2009). In this section,
we investigate how we can constrain the mass dependence of the
set of the physical quantities we need for a complete description
of the scaling relations, by imposing that this mass dependence is
fully responsible for any observed deviation from the self-similar
prediction.

In general, we can write the scaling relations here investigated
between the mass M and an observable X as M = N c Xa Eb

z . Note
that, for sake of completeness, we are considering a normalization
with its own exponent (to treat the case of, e.g., βP and fg in equa-
tion 2) and a term for the redshift evolution proportional to Ez.
In the case that the normalization N depends upon the mass M,
N = N0M

m, the scaling relations are then modified accordingly:

M = N c/(1−c m)
0 Xa/(1−c m) Eb/(1−c m)

z = Nobs Xaobs Ebobs
z , (7)

where the subscript obs in the last member refers to the values
measured by a best-fitting procedure leaving normalization (Nobs),
slope (aobs) and redshift evolution (bobs) free to vary. By imposing
c = a = aexp, where aexp is the nominal exponent predicted in the
self-similar scenario, and equating the second and third members of
equation (7), we obtain that the ‘intrinsic’, mass-corrected scaling
relations can be recovered by estimating

m = 1/aexp − 1/aobs

N c = N 1−c m
obs = N aexp/aobs

obs

b = bobs(1 − c m) = bobs aexp/aobs. (8)

Following the expression of equation (2), where all the scaling
relations can be written as a function of (EzM), we assume a similar
dependence on the mass of the three unknown parameters (i.e. the
logarithmic slope of the pressure βP, the gas mass fraction fg and

the gas clumpiness C):

βP = βP,0 (EzM)m1

fg = fg,0 (EzM)m2

C = C0 (EzM)m3 . (9)

Using equation (9), together with equations (3) and (7), we can
then write a general expression in the form

(EzM)1−θ m1+φ m2+φ m3/2 ∼ βθ
P,0C

−φ/2
0 f

−φ
g,0

(E−1
z L)α(EzMg)βT γ , (10)

which can be resolved in each of the scaling laws considered here
(see equations 2 and 4) as

EzM ∼ (
C0.5

0 fg,0

)−1/(1−m) (
EzMg

)1/(1−m)
; m = −m2 − m3/2

∼ β
3/2/(1−3/2 m)
P ,0 (kT )3/2/(1−3/2 m) ; m = m1

∼ β
3/8/(1−3/4 m)
P,0 f

−3/2/(1−3/4 m)
g,0

(
E−1

z L
)3/4/(1−3/4 m)

; m = m1/2 − 2m2 − m3

∼ β
3/5/(1−3/5 m)
P,0 f

−3/5/(1−3/5 m)
g,0

(
EzYSZD2

A

)3/5/(1−3/5 m)
; m = m1 − m2. (11)

Here, the symbol ‘∼’ is used to replace all the factors and pivot
values shown in equation (2). These equations show explicitly the
quantities that can be constrained by fitting a linear function, with
normalization and slope as free parameters, to the logarithmic values
of the mass and of the observables. For example, by fitting the M–T
relation, one can directly estimate m = m1 from the best-fitting value
of the slope and βP, 0 from the best-fitting value of the normalization.
In the following subsection, we show how we can constrain the
parameters of our interest, defined in equation (9), by combining
the results obtained from the linear fit of the scaling relations and
quoted in Table 2.

Once the dependence on the mass is assessed, we can fit the
scaling relation by fixing the expected slope aexp and propagating
the correction to the total mass:

(1 − θ m1 + φ m2 + φ m3/2) log(EzM) = n̄ + aexp log(X). (12)

The normalization n̄ is the only free parameter and is used to cali-
brate finally the gas mass fraction, fg, 0, the gas clumpiness, C0, and
the logarithmic slope of the gas pressure, βP, 0.

MNRAS 446, 2629–2639 (2015)
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Table 2. Best-fitting results for the scaling relations investigated. N is the number of fitted data; ρ is the Pearson’s correlation
coefficient; n and a refer to equation (5); χ2

r is the reduced χ2; σ i is the intrinsic scatter in log M at given observable X ; m and N c are
described in equation (8) and are obtained from the fits with normalization n and slope a as free parameters. For each scaling relation,
we provide the best-fitting results obtained with (1) equation (5) with the slope fixed to the self-similar value and the sub-sample of
‘local’ (i.e. z < 0.15) and ‘massive’ (i.e. M500 > 3 × 1014 M�) objects; (2) as for (1), but leaving the slope free to vary; (3) equation
(12); (4–6) as for (1–3), but for the subsample of the all ‘local’ clusters. In particular, the third row of the ‘local’ samples [i.e. fit (3)
and (6)] refers to the best-fitting results for a fixed slope and including the mass dependence described in equation (12). Finally, the fit
(7) is obtained by equation (12) with the normalization fixed after the calibration of the physical quantities described in equation (9)
(see the instructions at the end of Section 3.2). In Fig. C1, we show the samples and the best-fitting lines that represent the results for
the fits (4–7).

Sample N ρ 10n = Nobs a χ2
r σ i m N c

M–Mg

(1) Local massive 16 0.94 0.883 ± 0.012 1.000 6.9 0.053 ± 0.013 – –
(2) 0.923 ± 0.033 0.751 ± 0.067 2.3 0.028 ± 0.023 −0.332 ± 0.119 0.899 ± 0.112

(3) (equation 12) 0.912 ± 0.017 1.000 1.4 0.019 ± 0.016 – –
(4) Local all 59 0.97 1.065 ± 0.005 1.000 44.4 0.096 ± 0.010 – –

(5) 0.848 ± 0.025 0.835 ± 0.017 7.8 0.048 ± 0.007 −0.198 ± 0.025 0.821 ± 0.031
(6) (equation 12) 0.912 ± 0.011 1.000 1.0 0.000 ± 0.003 – –

(7) 0.912 1.000 1.0 0.000 ± 0.004 – –

M–T
(1) Local massive 29 0.90 0.927 ± 0.017 1.500 1.7 0.043 ± 0.016 – –

(2) 0.947 ± 0.034 1.390 ± 0.119 1.6 0.044 ± 0.018 −0.053 ± 0.062 0.943 ± 0.094
(3) (equation 12) 0.890 ± 0.017 1.500 1.9 0.042 ± 0.014 – –

(4) Local all 73 0.97 0.780 ± 0.008 1.500 4.9 0.073 ± 0.009 – –
(5) 0.873 ± 0.021 1.679 ± 0.033 3.6 0.055 ± 0.008 0.071 ± 0.012 0.886 ± 0.027

(6) (equation 12) 0.881 ± 0.014 1.500 1.0 0.007 ± 0.011 – –
(7) 0.890 1.500 1.1 0.009 ± 0.011 – –

M–L
(1) Local massive 22 0.87 0.830 ± 0.022 0.750 2.2 0.060 ± 0.019 – –

(2) 0.855 ± 0.054 0.679 ± 0.088 2.2 0.061 ± 0.021 −0.138 ± 0.190 0.841 ± 0.131
(3) (equation 12) 0.909 ± 0.035 0.750 1.6 0.070 ± 0.031 – –

(4) Local all 60 0.90 1.118 ± 0.017 0.750 11.1 0.158 ± 0.017 – –
(5) 0.821 ± 0.046 0.609 ± 0.028 12.6 0.103 ± 0.017 −0.309 ± 0.076 0.784 ± 0.063

(6) (equation 12) 0.837 ± 0.023 0.750 2.5 0.122 ± 0.020 – –
(7) 0.852 0.750 2.6 0.124 ± 0.020 – –

M–YSZ

(1) Local massive 27 0.79 1.960 ± 0.038 0.600 4.0 0.089 ± 0.017 – –
(2) 1.923 ± 0.169 0.578 ± 0.093 4.1 0.091 ± 0.018 −0.063 ± 0.277 1.971 ± 0.371

(3) (equation 12) 2.113 ± 0.052 0.600 2.5 0.080 ± 0.021 – –
(4) Local all 36 0.90 1.753 ± 0.024 0.600 9.6 0.110 ± 0.016 – –

(5) 2.165 ± 0.369 0.774 ± 0.127 9.2 0.098 ± 0.032 0.374 ± 0.212 1.820 ± 0.387
(6) (equation 12) 2.083 ± 0.044 0.600 2.9 0.101 ± 0.024 – –

(7) 2.113 0.600 2.9 0.103 ± 0.024 – –

3.2 The best-fitting constraints

In an ideal case, where the samples analysed have a well-known
selection function, a direct constraint on the dependence of the
scaling relations on the mass (and the redshift) could be obtained
by applying the equations listed above. In particular, from equation
(11), one can recover

(i) βP, 0 and m1 from the best-fitting normalization and slope of
the observed M–T relation;

(ii) using (i), fg, 0 and m2 from the best-fitting normalization and
slope of the observed M–YSZ relation;

(iii) using (ii), C0 and m3 from the best-fitting normalization and
slope of the observed M–Mg (or M–L) relation.

However, considering that (a) our data sets have been collected
from the literature (see discussion in E13) and, thus, cannot be
treated as a statistically well-defined sample, and (b) a different
definition of R500 as recovered from, e.g., hydrostatic masses and

MYX
(see, for instance, the mass-dependent bias shown in Fig. 1)

affects the reconstructed Planck YSZ signal, we decide to proceed
differently. First, we decide not to use the M–YSZ relation to cali-
brate the gas mass fraction. This implies that we have to deal with
a degeneracy between the mass dependence on fg and C. Therefore,
we fix m3 = 0, assuming that the gas clumpiness does not have any
significant dependence on the cluster mass (see e.g. Nagai & Lau
2011 and Roncarelli et al. 2013, where a marginal mass dependence
for simulated systems appears at radii beyond R200, but it is almost
negligible at R500). Secondly, we use the whole sample of local sys-
tems (‘local all’ sample in Table 2) to quantify the mass dependence
in equation (9). To do that, we use equation (8) and compute the cor-
rected values of the normalizationN c from the observed best-fitting
parameters. The best-fitting values of m are quoted in Table 2 and
imply that m1 = 0.071 ± 0.012 and m2 = 0.198 ± 0.025. Thirdly, to
constrain the normalizations βP, 0 and C0.5fg, 0, we analyse the sub-
samples of the nearby (z < 0.15), massive (M500 > 3 × 1014 M�)
galaxy clusters (‘local massive’ sample in Table 2). Doing that, we
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2634 S. Ettori

Figure 2. From left top to right bottom, we show the process of the calibration of the three physical quantities we require to define the normalization of the
scaling relations. Left top: ratios between the observed and expected normalizations of equation (2). Filled points refer to the best-fitting results measured for
nearby massive systems (M500 > 3 × 1014 M� and z < 0.15). For sake of completeness, we also show (but do not use in our calculations) the ratios measured
for clusters at z > 0.15 and divided into two redshift bins (biggest points: subsample including the half of the most massive ones). Right top: calibration of
C0.5fg and βP using only the nearby massive systems (filled dots in the left-hand panel). The red circle represents the reference values of (βP, fg) = (3, 0.1)
with a relative uncertainty of 10 per cent. Left bottom: combination of the constraints from the normalizations of the M–Mg, M–L and M–YSZ relations in the
gas mass fraction–gas clumpiness plane. The label ‘(MYX

)’ indicates the constraint on fg obtained from the MYX
−YSZ relation (see Section 3.2). Right bottom:

as in the upper-left panel, after correcting for the best-fitting values of (βP, fg) in equation (13) as discussed in Sections 3.1 and 3.2.

minimize the effect of a mass and redshift dependence on these val-
ues, and avoid any significant Malmquist bias due to the fact that the
average luminosity of selected clusters is higher than that in the par-
ent population in a flux limited sample (e.g. Stanek et al. 2006; Pratt
et al. 2009). Proceeding in this way, we constrain βP, 0 and C0.5fg, 0

from the best-fitting normalization of the observed M–T and M–
Mg relation, respectively, and obtain C0.5

0 fg,0 = 0.110(±0.002) and

βP, 0 = 3.14( ± 0.04), respectively, at � = 500 (see the top-right
panel of Fig. 2).

For sake of completeness, we show in Fig. 2 also the ratios be-
tween the estimated normalization and the expected value obtained
in two redshift bins (defined with respect to the median value in
the interval 0.15 −max(z)) and in two mass bins (build accordingly
to the median value in each redshift bin). These ratios indicate that
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The physics inside the X-ray/SZ scaling laws 2635

our procedure is already capable of reproducing reasonably well the
scaling relations for systems in the low-mass and/or high-redshift
regime. On the other hand, a proper treatment of these cases re-
quires the adoption of the selection function used to define our
sample. This treatment is beyond the purpose of the present work
and can be avoided just considering local, and massive, objects.

Considering now the M–YSZ relation, where the normalization
is independent from the clumpiness, we can break the degeneracy
between C and fg (see the bottom-left panel of Fig. 2) and obtain
C0 = 2.07( ± 0.02) and fg, 0 = 0.076( ± 0.003).

To summarize, we calibrate the new formalism in the following
way:

(i) using the ‘local all’ sample, we quantify the mass dependence
m1 and m2 (m3 is fixed equal to 0) using equation (11) (see the fit
labelled (5) in Table 2);

(ii) we estimate βP, 0 and C0.5
0 fg,0 in the ‘local massive’ samples

through the M–T and M–Mg relation, respectively, by equation (12)
(see the fit labelled (3) in Table 2);

(iii) the degeneracy between C0 and fg, 0 is broken with the M–YSZ

relation for the ‘local massive’ systems.

All the quoted errors are at 1σ level and originate from the statis-
tical uncertainties only. When we take into account the uncertainties
related to the cross-calibration between Chandra and XMM–Newton
on the gas temperature, gas mass, gas luminosity and hydrostatic
mass as discussed, e.g., in Maughan (2014) and Mahdavi et al.
(2013; also private communication), systematic errors of ±0.002
and ±0.02 affect the normalization of C0.5fg and βP, respectively,
whereas the error associated with the slope of the mass dependence
is about ±0.04 and ±0.004, respectively.

Once we have constrained the normalizations and mass depen-
dence of the quantities in equation (9), we re-estimate the ra-
tios between the normalizations of the scaling relations and the
predicted values. As shown in Fig. 2 (panel at the bottom right), we
obtain a match of the order of few per cent for all the set of scaling
laws investigated. The fit labelled (7) in Table 2 indicates the results
obtained by fixing both the slope (to the self-similar expectation)
and the normalization (after the calibration described above) of the
scaling relations. Both the reduced χ2 and the intrinsic scatter are
lower than in the scaling laws where normalizations and slopes are
used as free parameters.

3.3 Comparison with previous work

The constraint on the value of C0.5fg is perfectly consistent with
the results on the gas mass fraction obtained from recent work
on both X-ray observations and the most recent hydrodynami-
cal numerical simulations. By combining observational constraints
from Vikhlinin et al. (2006), Arnaud et al. (2007) and Sun et al.
(2009), Pratt et al. (2009) quote a gas mass fraction at � = 500 of
0.113( ± 0.005)(M/5 × 1014 M�)0.21( ± 0.03). Planelles et al. (2013),
using a set of cosmological smoothed particle hydrodynamical
simulations of massive (M500 > 2.8 × 1014 M�) galaxy clusters,
measure, in the redshift range 0–1, a mean gas mass fraction in the
range between 0.105 (for simulations including radiative cooling,
star formation and feedback from supernovae) and 0.140 (for the
non-radiative set), with an average value of 0.117 (and an rms of
0.008) for the objects simulated also accounting for the effect of
feedback from active galactic nuclei. This would require C ≈ 1,
implying that the considered YSZ signal is biased high by about
(0.110/0.076) ∼ 45 per cent at given mass. This amount is difficult
to explain with some selection effect, also considering that 22 (out

Figure 3. Constraints on the logarithmic slope of the pressure profile as a
function of M500. The dotted lines show the 1σ uncertainty associated with
the best-fitting result (dashed line; see equation 13). The points refer to the
best-fitting models adopted in Planck Intermediate Results V (2013) and
Arnaud et al. (2010) as labelled.

of 27) of the systems included in the ‘local massive’ sample have a
signal-to-noise ratio related to the SZ detection in correspondence
of the X-ray position larger than 7 (all the local, massive objects
have a signal-to-noise ratio in the range 5.7–26.5, with a median
value of 10.3), making them less prone to any Malmquist-like bias
propagated through the sample selection (see e.g. discussion in
section 7.5.2 of Planck Collaboration XXIX 2014). On the other
hand, if we replace the hydrostatic masses with the values MYX

estimated through the YX parameter (see a discussion on the com-
parison between them in Section 3 and Fig. 1) and fit equation (12),
we measure Nobs = 1.670(±0.008) that implies a gas mass fraction
of 0.113( ± 0.002) and, combined with the result on the M–Mg rela-
tion, a gas clumpiness slightly lower than the physically motivated
lower bound of 1 (C ∼ 0.95). We conclude that, for the available
data set, some tension between hydrostatic M and MYX

is present
(see, for instance, the mass-dependent bias shown in Fig. 1) that
does not permit to break univocally the degeneracy between fg and
C. We recognize also that more work on this topic, with a more
extended and detailed comparison between hydrostatic masses and
integrated Compton parameters, is needed, but beyond the purpose
of the present study.

The mass dependence of the gas pressure profile (see results for
the M–T relation for the ‘local all’ sample in Table 2) is not in con-
trast with the present observational constraints (e.g. Arnaud et al.
2010; Sun et al. 2011; Planck Intermediate Results V 2013). In
Fig. 3, we show our best-fitting constraints compared to the predic-
tions from the best-fitting values of the universal model presented in
Arnaud et al. (2010) and in Planck Intermediate Results V (2013).
This universal model is obtained by combining observational data
based on XMM–Newton observations in the radial range 0.03–1 R500

with hydrosimulation results out to 4 R500 and using a functional
form as originally proposed in Nagai, Kravtsov & Vikhlinin (2007)
to fit the combined re-scaled profile. Our result on the logarith-
mic slope of the pressure profile at R500, βP, shows a steeper mass
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dependence, with values that lie between 2.8 at ∼1014 M�, pre-
ferred also from the Planck Collaboration best-fitting parameters,
and 3.3 at ∼1015 M�, more in agreement with the Arnaud et al.
profile.

4 SU M M A RY A N D D I S C U S S I O N

In the present work, we estimate the predicted values of the nor-
malization and slope of the scaling relations holding between the
hydrostatic mass and (i) the gas mass, (ii) the gas temperature, (iii)
the X-ray bolometric luminosity and (iv) the integrated Compton
parameter. We show in details how these normalizations depend
upon the gas density clumpiness C, the gas mass fraction fg and the
logarithmic slope of the thermal pressure profile βP. We argue that
the deviations of the observed slopes from the self-similar expecta-
tions can be fully explained with a mass dependence of the gas mass
fraction and the logarithmic slope of the thermal pressure profile.

Relying on the availability of large data base of measured hydro-
static masses and observables in X-ray and millimetre wave bands,
we constrain at high significance the normalization and mass de-
pendence of the gas mass fraction and the logarithmic slope of the
thermal pressure profile, putting also some limits on the level of gas
clumpiness requested to accommodate in a self-consistent scenario
all the set of the scaling relations. We conclude the following.

(i) The three astrophysical quantities (i.e. gas clumpiness, gas
mass fraction and slope of the pressure profile) advocated to explain
consistently the predicted M–{Mg, T, L, YSZ} relations are sufficient
to define the observed normalization and slope of these scaling laws.

(ii) Using nearby (z < 0.15), massive (M500 > 3 × 1014 M�)
galaxy clusters, the M–Mg requires (C0.5fg) = 0.110( ± 0.002).
Using the further constraint obtained from the clumpiness-free
normalization of the M–YSZ relation, we obtain that, within R500,
the gas clumpiness is 2.07( ± 0.02) and the gas mass fraction is
0.076( ± 0.003) (see Fig. 2).

(iii) We note, however, that being the constraint on (C0.5fg) well
in agreement with results from, e.g., recent hydrodynamical simu-
lations on the cluster gas mass fraction at � = 500 (e.g. Planelles
et al. 2013), it would suggest that C ≈ 1 and that the considered YSZ

signal is biased high by (0.110/0.076) ∼ 45 per cent at given mass.
(iv) Considering that most of the galaxy clusters included in the

‘local massive’ sample have a signal-to-noise ratio related to the SZ
detection in correspondence of the X-ray position larger than 7, we
exclude any significant Malmquist-like bias affecting the analysed
sample.

(v) On the other hand, if we replace the hydrostatic masses with
the values obtained from the Planck Collaboration through the YX

parameter and carry on the same analysis, we obtain indeed that
C ∼ 1. However, this result highlights a tension between the mea-
surements of M and MYX

for the same objects, with the hydrostatic
estimates that over (under) predict the high (low) values of MYX

by
about 30 per cent (see Fig. 1).

(vi) Using the same sample of local and massive
galaxy clusters and the M–T relation, we constrain
βP = −dln P/dln r = 3.14( ± 0.04).

(vii) We quantify the dependence upon the mass of the two
adopted quantities (the clumpiness is assumed to be independent
from the mass, i.e. m3 = 0) through the best-fitting parameters of
equation (11), and obtain fg ∼ M0.20 ± 0.02 and βP ∼ M0.07 ± 0.01; while
the former is in good agreement both with other observational re-
sults and profiles predicted from hydrodynamical simulations, the
latter one shows agreement with the Planck Intermediate Results

V (2013) best-fitting parameters at lower (∼1014 M�) masses and
with the Arnaud et al. (2010) profile at higher (∼1015 M�) masses,
requiring a steeper mass dependence.

(viii) By adjusting for the mass dependence of fg and βP, we
demonstrate (see results labelled with ‘equation (12)’ and fit (7) in
Table 2) that the scaling relations with a slope fixed to the expected
value in the self-similar scenario provide best-fitting results with
a reduced χ2 and an intrinsic scatter comparable to the results
obtained leaving the slope free to vary.

Therefore, we conclude that the scaling relations based on X-
ray/SZ quantities have a simple and predictable behaviour that can
be fully described at � = 500 by the equations (2) and (9) (or their
formal extension in equation 10), where

C0.5fg = 0.110(±0.002)

(
EzM

5 × 1014 M�

)0.198(±0.025)

βP = − d ln P

d ln r
= 3.14(±0.04)

(
EzM

5 × 1014 M�

)0.071(±0.012)

.(13)

The quoted uncertainties are statistical only and are the products of
the propagation of the relative error available to the estimates of the
hydrostatic masses, gas masses, temperature and luminosity and the
size of the cluster sample analyzed. When the uncertainties related
to the cross-calibration between Chandra and XMM–Newton on
the gas temperature and hydrostatic mass are taken into account
as discussed, e.g., in Maughan (2014) and Mahdavi et al. (2013),
systematic errors of the order of (i) ±0.002 and ±0.04 and (ii)
±0.02 and ±0.004 affect the normalization and the slope of the
mass dependence of C0.5fg and βP, respectively.

Inserting these values into equation (12), the gravitating mass can
be recovered with, for instance, a lower intrinsic scatter associated
with it than the one measured by using the standard relations with
normalization and slope free to vary.

For the set of the four relations here investigated, these results
provide a significant simplification in terms of number of free pa-
rameters to be constrained: routinely, a slope and a normalization
have to be estimated (for a total of eight free parameters), whereas
in our new framework, one needs only to limit the normalization
of C, fg and βP and the mass dependence of the latter two, for a
total of five free parameters. This evidence can also be formalized
by the estimates of the Akaike information criterion (AIC; Akaike
1974), or equivalent information criteria (see e.g. Liddle 2007). All
our models that adopt the self-similar scaling laws with the mass-
dependent physical quantities perform significantly better (from a
statistical point of view) than the power-law fits where normaliza-
tion and slope are left free to vary (apart from the M–T relation of
the sample ‘local massive’, where AICs are comparable) with an
evidence ratio e0.5�, with � being the difference between the AIC
estimated for ‘free parameters’ model and the one for the modified
scaling relations, larger than 600 (compare, e.g., fits labelled (3)
and (6) with the ones labelled (2) and (5) in Table 2). When the four
scaling relations are considered together, we obtain a cumulative
χ2 of 1743 and 379 with 228 data points for the ‘local all’ sample
(222, 173 and 94, respectively, for the ‘local massive’ one) for the
set of the scaling laws with eight (all the normalizations and slopes)
and five free parameters, respectively, implying ‘decisive’ evidence
(according to the Jeffreys’ scale in Kass & Raftery 1995) in favour
of our alternative scenario.

We also note that the formalism described in Section 3.1 (e.g.
equation 10) is ready to accommodate the redshift evolution of the
scaling relations through the assumed expressions in equation (9).

MNRAS 446, 2629–2639 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/446/3/2629/2892895 by guest on 12 M
arch 2020



The physics inside the X-ray/SZ scaling laws 2637

As we present in Fig. 2, preliminary plots that do not consider
any selection function show encouraging agreements between the
observed distributions and the expected ones. More dedicated work
to characterize properly the studied samples both as a function of
mass and redshift (for instance, to measure the relative weight of
low-mass and high-redshift systems in the fit of the scaling relations)
is however needed.

The result of this study opens a very promising prospective to
have a full set of intercorrelated and internally consistent scaling
relations that rely on the ones predicted from the self-similar sce-
nario with an extension depending on well-identified astrophysical
properties that can be investigated independently (like, e.g., the
mass dependence of the thermal pressure profile or of the gas mass
fraction).

AC K N OW L E D G E M E N T S

We thank the anonymous referee for helpful comments that im-
proved the presentation of the work. We also thank Mauro Sereno,
Marco De Petris and Dominique Eckert for discussion and com-
ments on the manuscript. We acknowledge the financial contribution
from contracts ASI-INAF I/009/10/0 and PRIN-INAF 2012.

R E F E R E N C E S

Akaike H., 1974, IEEE Trans. Autom. Control, 19, 716
Allen S. W., Evrard A. E., Mantz A. B., 2011, ARA&A, 49, 409
Anders E., Grevesse N., 1989, Geochim. Cosmochim. Acta, 53, 197
Arnaud K. A., 1996, in Jacoby G., Barnes J., eds, ASP Conf. Ser. Vol. 101,

Astronomical Data Analysis Software and Systems V. Astron. Soc. Pac.,
San Francisco, p. 17

Arnaud M., Evrard A. E., 1999, MNRAS, 305, 631
Arnaud M., Pointecouteau E., Pratt G. W., 2007, A&A, 474, L37
Arnaud M., Pratt G. W., Piffaretti R., Böhringer H., Croston J. H., Pointe-
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Reichert A., Böhringer H., Fassbender R., Mühlegger M., 2011, A&A, 535,

A4
Roncarelli M., Ettori S., Borgani S., Dolag K., Fabjan D., Moscardini L.,

2013, MNRAS, 432, 3030
Rozo E., Bartlett J. G., Evrard A. E., Rykoff E. S., 2014, MNRAS, 438, 78
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A P P E N D I X A : N U M E R I C A L E S T I M AT E S O F
T H E N O R M A L I Z AT I O N

For sake of completeness, we provide here the details on how the
numbers of equation (2) are obtained. Let us define

k0 = 4

3
π�ρc,0 = �H0

2G
= 1.928 × 10−26 �

500
g s cm−3

k1 = μmamuGk
1/3
0 = 1.820 × 10−40 g1/3 s−5/3 cm2. (A1)

Then, the normalization for the M–Mg, M–T, M–L and M–YSZ rela-
tions can be estimated as

nMMg = (C0.5
0 fg,0)−1 Mg,0

M0

nMT =
(

fT

k1

)3/2

β
3/2
P,0

T
3/2

0

M0

nML =
(

4/3π μ2
e m2

amu f 0.5
T

fL cf,0 k0 k0.5
1

)3/4

β
3/8
P,0 (C0.5

0 fg,0)−3/2 L
3/4
0

M0

nMY =
(

me c2 μe mamu fT

k1σT

)3/5

β
3/5
P,0 f

−3/5
g,0

Y
3/5
0

M0
, (A2)

where M0, Mg, 0, T0, L0 and Y0 are the pivot values in cgs unit and
are equal to 5 × 1014 M�, 5 × 1013 M� 5 keV, 5 × 1044 erg s−1

and 10−4 Mpc2, respectively, in the present work.

A P P E N D I X B : E N E R G Y BA N D D E P E N D E N C E
O F T H E M– L R E L AT I O N

The gas luminosity considered in our analysis is the X-ray bolomet-
ric one, i.e. it has been evaluated in the energy band 0.01–100 keV.
We indicate here how the M–L relation is modified once the lumi-
nosity is estimated in different energy bands. In these cases, the
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2638 S. Ettori

Figure C1. These plots show the samples and the best-fitting results, with the associated residuals χ , described from lines (4)–(7) in Table 2. Note that the
best-fitting lines labelled (6) and (7) have been corrected by the factor (1 − θ m1 + φ m2 + φ m3/2) in equation (12) for the sake of representation. The sum
of the squared residuals χ provides the quoted total χ2.

cooling function cf will not show a dependence upon the tempera-
ture to the power of 1/2. By approximating the cooling function as
a power law of the temperature, we can write cf = cf, 0 × Tτ and

FzM

5 × 1014 M�
= nMLe

(
βP

3

)τ/(1+2τ/3) (
C0.5 fg

0.1

)−2/(1+2τ/3)

(
F−1

z L

5 × 1044 erg s−1

)1/(1+2τ/3)

,

nMLe =
(

4/3π μ2
e m2

amu f τ
T

fL cf,0 k0 kτ
1

)1/(1+2τ/3)

. (B1)

We quote here cf, 0, τ and the modified M–L relation for the most
commonly used energy bands.

(i) (0.1–2.4) keV: formally, the best-fitting values with a power
law of the cooling function in the range 2–12 keV are cf =
1.12 × 10−23cpeT

−0.11
keV erg s−1 cm3. Adopting an exponent τ = 0,

cf, 0 = 0.91 × 10−23cpe and the M–L relation can be written as

FzM

5 × 1014 M�
= 2.110

(
C0.5 fg

0.1

)−2 (
F−1

z L

5 × 1044 erg s−1

)
. (B2)

(ii) (0.5–2 keV): as above, cf = 0.68 ×
10−23cpeT

−0.10
keV erg s−1 cm3. With a null dependence upon
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the temperature, cf = cf, 0 = 0.56 × 10−23cpe and the M–L relation
can be written as

FzM

5 × 1014 M�
= 3.400

(
C0.5 fg

0.1

)−2 (
F−1

z L

5 × 1044 erg s−1

)
. (B3)

(iii) (2–10 keV): in this case, cf = 0.38 ×
10−23cpeT

0.5
keV erg s−1 cm3. Then,

FzM

5 × 1014 M�
= 1.749

(
βP

3

)3/8 (
C0.5 fg

0.1

)−3/2

(
F−1

z L

5 × 1044 erg s−1

)3/4

. (B4)

A P P E N D I X C : PL OT S O F T H E IN V E S T I G AT E D
SCALI NG R ELATI ONS

We show in Fig. C1 the plots, with the best-fitting lines and the
corresponding residuals χ i of equation (6), of the samples described
in Table 2. The normalizations of these best-fitting scaling relations
are shown in Fig. 2.
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