348 research outputs found

    Predicting coexistence of plants subject to a tolerance-competition trade-off

    Full text link
    Ecological trade-offs between species are often invoked to explain species coexistence in ecological communities. However, few mathematical models have been proposed for which coexistence conditions can be characterized explicitly in terms of a trade-off. Here we present a model of a plant community which allows such a characterization. In the model plant species compete for sites where each site has a fixed stress condition. Species differ both in stress tolerance and competitive ability. Stress tolerance is quantified as the fraction of sites with stress conditions low enough to allow establishment. Competitive ability is quantified as the propensity to win the competition for empty sites. We derive the deterministic, discrete-time dynamical system for the species abundances. We prove the conditions under which plant species can coexist in a stable equilibrium. We show that the coexistence conditions can be characterized graphically, clearly illustrating the trade-off between stress tolerance and competitive ability. We compare our model with a recently proposed, continuous-time dynamical system for a tolerance-fecundity trade-off in plant communities, and we show that this model is a special case of the continuous-time version of our model.Comment: To be published in Journal of Mathematical Biology. 30 pages, 5 figures, 5 appendice

    Inferring the role of habitat dynamics in driving diversification: evidence for a species pump in Lake Tanganyika cichlids

    Get PDF
    Geographic isolation that drives speciation is often assumed to slowly increase over time, for instance through the formation of rivers, the formation of mountains or the movement of tectonic plates. Cyclic changes in connectivity between areas may occur with the advancement and retraction of glaciers, with water level fluctuations in seas between islands or in lakes that have an uneven bathymetry. These habitat dynamics may act as a driver of allopatric speciation and propel local diversity. Here we present a parsimonious model of the interaction between cyclical (but not necessarily periodic) changes in the environment and speciation, and provide an ABC-SMC method to infer the rates of allopatric and sympatric speciation from a phylogenetic tree. We apply our approach to the posterior sample of an updated phylogeny of the Lamprologini, a tribe of cichlid fish from Lake Tanganyika where such cyclic changes in water level have occurred. We find that water level changes play a crucial role in driving diversity in Lake Tanganyika. We note that if we apply our analysis to the Most Credible Consensus (MCC) tree, we do not find evidence for water level changes influencing diversity in the Lamprologini, suggesting that the MCC tree is a misleading representation of the true species tree. Furthermore, we note that the signature of habitat dynamics is found in the posterior sample despite the fact that this sample was constructed using a species tree prior that ignores habitat dynamics. However, in other cases this species tree prior might erase this signature. Hence we argue that in order to improve inference of the effect of habitat dynamics on biodiversity, phylogenetic reconstruction methods should include tree priors that explicitly take into account such dynamics

    The neutral theory of biodiversity with random fission speciation

    Get PDF
    International audienceThe neutral theory of biodiversity and biogeography emphasizes the importance of dispersal and speciation to macro-ecological diversity patterns. While the influence of dispersal has been studied quite extensively, the effect of speciation has not received much attention, even though it was already claimed at an early stage of neutral theory development that the mode of speciation would leave a signature on metacommunity structure. Here, we derive analytical expressions for the distribution of abundances according to the neutral model with recruitment (i.e., dispersal and establishment) limitation and random fission speciation which seems to be a more realistic description of (allopatric) speciation than the point mutation mode of speciation mostly used in neutral models. We find that the two modes of speciation behave qualitatively differently except when recruitment is strongly limited. Fitting the model to six large tropical tree data sets, we show that it performs worse than the original neutral model with point mutation speciation but yields more realistic predictions for speciation rates, species longevities, and rare species. Interestingly, we find that the metacommunity abundance distribution under random fission is identical to the broken-stick abundance distribution and thus provides a dynamical explanation for this grand old lady of abundance distributions

    Detecting local diversity-dependence in diversification

    Get PDF
    Whether there are ecological limits to species diversification is a hotly debated topic. Molecular phylogenies show slowdowns in lineage accumulation, suggesting that speciation rates decline with increasing diversity. A maximum-likelihood (ML) method to detect diversity-dependent (DD) diversification from phylogenetic branching times exists, but it assumes that diversity-dependence is a global phenomenon and therefore ignores that the underlying species interactions are mostly local, and not all species in the phylogeny co-occur locally. Here, we explore whether this ML method based on the nonspatial diversity-dependence model can detect local diversity-dependence, by applying it to phylogenies, simulated with a spatial stochastic model of local DD speciation, extinction, and dispersal between two local communities. We find that type I errors (falsely detecting diversity-dependence) are low, and the power to detect diversity-dependence is high when dispersal rates are not too low. Interestingly, when dispersal is high the power to detect diversity-dependence is even higher than in the nonspatial model. Moreover, estimates of intrinsic speciation rate, extinction rate, and ecological limit strongly depend on dispersal rate. We conclude that the nonspatial DD approach can be used to detect diversity-dependence in clades of species that live in not too disconnected areas, but parameter estimates must be interpreted cautiously

    Phylogenetic congruence between subtropical trees and their associated fungi.

    Get PDF
    Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities

    Uniting community ecology and evolutionary rescue theory:Community-Wide Rescue leads to a rapid loss of rare species

    Get PDF
    Most ecological communities are facing changing environments, particularly due to global change. When migration is impossible, adaptation to these altered environments is necessary to survive. Yet, we have little theoretical understanding how ecological communities respond both ecologically and evolutionarily to such environmental change. Here we introduce a simple eco-evolutionary model, the Community-Wide Rescue (CWR) model, in which a community faces environmental deterioration and each species within the community is forced to undergo adaptation or become extinct. We assume that all species in the community are equivalent except for their initial abundance. This individual based simulation model thus combines community ecology and evolutionary rescue theory. We show that under Community-Wide Rescue a rapid loss of rare species occurs. This loss occurs due to competition and a limited supply of beneficial mutations. The rapid loss of rare species provides a testable prediction regarding the impact of Community-Wide Rescue on species abundance distributions in ecological communities

    Inferring state-dependent diversification rates using approximate Bayesian computation (ABC)

    Get PDF
    State-dependent speciation and extinction (SSE) models provide a framework for quantifying whether species traits have an impact on evolutionary rates and how this shapes the variation in species richness among clades in a phylogeny. However, SSE models are becoming increasingly complex, limiting the application of likelihood-based inference methods. Approximate Bayesian computation (ABC), a likelihood-free approach, is a potentially powerful alternative for estimating parameters. One of the key challenges in using ABC is the selection of efficient summary statistics, which can greatly affect the accuracy and precision of the parameter estimates. In state-dependent diversification models, summary statistics need to capture the complex relationships between rates of diversification and species traits. Here, we develop an ABC framework to estimate state-dependent speciation, extinction and transition rates in the BiSSE (binary state dependent speciation and extinction) model. Using different sets of candidate summary statistics, we then compare the inference ability of ABC with that of using likelihood-based maximum likelihood (ML) and Markov chain Monte Carlo (MCMC) methods. Our results show the ABC algorithm can accurately estimate state-dependent diversification rates for most of the model parameter sets we explored. The inference error of the parameters associated with the species-poor state is larger with ABC than in the likelihood estimations only when the speciation rate is highly asymmetric between the two states (λ1 / λ0 = 5). Furthermore, we find that the combination of normalized lineage-through-time (nLTT) statistics and phylogenetic signal in binary traits (Fitz and Purvis’s D) constitute efficient summary statistics for the ABC method. By providing insights into the selection of suitable summary statistics, our work aims to contribute to the use of the ABC approach in the development of complex state-dependent diversification models, for which a likelihood is not available.Competing Interest StatementThe authors have declared no competing interest

    Using molecular phylogenies in island biogeography: It's about time

    Get PDF
    Island biogeography aims at inferring the processes that govern the assembly of communities in space and time. Molecular phylogenies can tell us about the timings of island colonisations and diversification, but have rarely been used for the estimation of colonisation, speciation and extinction rates on islands. In this study we illustrate the effects of including phylogenetic information with the Galapagos avifauna. We find that by including colonisation times we obtain much more precise and accurate parameter estimates than if we rely solely on species richness and endemicity status. Inclusion of branching times improves estimates even further. As molecular phylogenies become increasingly available, we urge biogeographers to start using more of the information they contain
    • 

    corecore