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Abstract The neutral theory of biodiversity and bio-
geography emphasizes the importance of dispersal and
speciation to macro-ecological diversity patterns. While
the influence of dispersal has been studied quite exten-
sively, the effect of speciation has not received much at-
tention, even though it was already claimed at an early
stage of neutral theory development that the mode of
speciation would leave a signature on metacommunity
structure. Here, we derive analytical expressions for
the distribution of abundances according to the neutral
model with recruitment (i.e., dispersal and establish-
ment) limitation and random fission speciation which
seems to be a more realistic description of (allopatric)
speciation than the point mutation mode of speciation
mostly used in neutral models. We find that the two
modes of speciation behave qualitatively differently
except when recruitment is strongly limited. Fitting the
model to six large tropical tree data sets, we show
that it performs worse than the original neutral model
with point mutation speciation but yields more realistic
predictions for speciation rates, species longevities, and
rare species. Interestingly, we find that the metacom-
munity abundance distribution under random fission
is identical to the broken-stick abundance distribution
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and thus provides a dynamical explanation for this
grand old lady of abundance distributions.

Keywords Sampling formula · Maximum likelihood ·
Fundamental biodiversity number

Introduction

Understanding the assembly and biodiversity of eco-
logical communities is the primary aim of commu-
nity ecology. In an excellent minireview of ecological
assembly rules, Belyea and Lancaster (1999) summa-
rized the main drivers or constraints determining com-
munity structure: environmental constraints, dispersal
constraints, internal dynamics (such as competition),
and biogeography (which includes the processes of
speciation and extinction). Most of the literature in
the past decades has focused on the first three factors
(see, e.g., Cody and Diamond 1975; Weiher and Keddy
2001). In contrast, biogeography and the processes
of diversification have received relatively little atten-
tion despite the pioneering work by MacArthur and
Wilson (1967), Collwell and Winkler (1984), and
Ricklefs (1987) who clearly showed the importance of
these processes for community composition and macro-
ecological patterns. However, there has been a revived
interest in the influence of biogeographical forces on
community structure in the last decade due to two
new developments. The first development is commu-
nity phylogenetics, which studies evolutionary relation-
ships between coexisting species (Webb et al. 2002;
Cavender-Bares et al. 2009). The second is neutral
community ecology, which suspends the role of species
differences in order to create a null model that allows
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the study of factors other than asymmetrical species in-
teractions such as dispersal and biogeography (Hubbell
2001). In this paper, we focus on the latter development
and particularly on the impact of speciation on the
shape of species abundance distributions.

Building on the classic works of MacArthur and
Wilson (1967) and Caswell (1976), Hubbell (2001) in-
troduced his neutral theory of community ecology that
states that stochastic interplay between a few basic,
ecological as well as macro-evolutionary, processes
(speciation, birth, and death, and—on a local scale—
dispersal) can explain general large-scale diversity pat-
terns, such as species-abundance distributions (SADs)
and species–area curves. The neutral theory as devel-
oped by Hubbell (2001) makes three basic assumptions:
(1) individuals of different species are functionally
equivalent (neutrality assumption), (2) the community
size is constant (zero-sum assumption), and (3) specia-
tion is comparable to mutation where each individual
has an equal probability of producing mutated, i.e., spe-
ciated, offspring (point mutation assumption). While
the neutrality assumption is at the heart of the theory,
the other two assumptions are assumptions of partic-
ular model implementations of the theory, allowing
for analytical expressions for diversity measures, rather
than fundamental assumptions of the theory itself. A
mismatch between observations and theoretical pre-
dictions can, in principle, be due to these additional
assumptions and therefore cannot be immediately in-
terpreted as calling for a rejection of the neutral theory
as a whole (Etienne 2007).

The zero-sum assumption and the point mutation
assumption are of a very different nature. It has been
shown that models without the zero-sum assumption
predict mathematically exactly the same equilibrium
SAD as the model with this assumption (Etienne et al.
2007a; Haegeman and Etienne 2008; Conlisk et al.
2010). In contrast, alternatives to the point mutation
assumption can predict very different SADs (Hubbell
2001; Etienne et al. 2007b; Allen and Savage 2007;
Haegeman and Etienne 2009; De Aguiar et al. 2009).
Indeed, Hubbell (2001) claimed that speciation would
leave a signature on diversity patterns in the metacom-
munity (see also Mouillot and Gaston 2007). There-
fore, a thorough analysis of neutral theory, or any
theory of community assembly for that matter, requires
the (quantitative) exploration of alternative modes of
speciation, particularly those that are very different
from point mutation. Hubbell (2001) proposed an al-
ternative speciation mode that is the opposite of the
sympatric point mutation mode which he dubbed “ran-
dom fission” because speciation results from random
splitting of populations which may be interpreted as

mimicking allopatric speciation. Intuitively, it seems
more reasonable than point mutation because the in-
cipient abundance of new species is larger than a single
individual (Allen and Savage 2007; Rosindell et al.
2010), and it is also more plausible than a fixed initial
abundance, as assumed by Allen and Savage (2007).
Hubbell (2001) stated that the equilibrium metacom-
munity SAD resulting from random fission speciation is
a zero-sum multinomial, just like the local community
SAD in the point mutation case—which was later called
dispersal-limited (Etienne and Alonso 2005, 2007), or
recruitment-limited (Jabot et al. 2008) multinomial—
but he did not prove this mathematically. Ricklefs
(2003) provided some approximate formulas for the
total species richness in the metacommunity under ran-
dom fission speciation, but so far, a full mathematical
treatment has remained elusive.

In this paper, we provide the full sampling formula
for the distribution of abundance in a local community
that receives immigrants from a very large metacom-
munity described by random fission speciation. It is
thus the counterpart of the sampling formula where
the metacommunity is described by point mutation
(Etienne 2005) and may be similarly extended to in-
volve multiple samples (Etienne 2007, 2009a, b). The
metacommunity SAD is clearly different from the zero-
sum multinomial, in contrast to Hubbell’s conjecture.
We use the new sampling formula to fit the random
fission model to six large tropical tree data sets and
compare it to the fit of the point mutation model. We
end with a discussion of our results.

Model

We will first describe metacommunity dynamics, solve
it for the stationary abundance distribution, and then
derive expressions for (possibly dispersal-limited) local
samples from this stationary distribution. We add the
superscript “meta” to expectations and probabilities
that refer to the metacommunity to distinguish them
from expressions for samples, which we will denote by
the superscript “smp”.

The master equation

We follow Hubbell (2001) in assuming a constant
metacommunity size and denote it by JM. However,
as in the point mutation model (Etienne et al. 2007a;
Haegeman and Etienne 2008), this assumption is not
essential for determining the equilibrium species abun-
dance distribution because fluctuations of species abun-
dances cancel out and yield an effectively constant
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community size, that is, a sharply peaked probability
distribution for metacommunity size (Haegeman and
Etienne 2010). We denote the abundance vector in
the metacommunity by �S = (S1, S2, S3, . . . , SJM) where
each component Sn is the number of species with
abundance n. We study the behavior of the probability
P

meta(�S) of this vector in time by writing down the so-
called master equation for this vector �S which reads, in
general (Haegeman and Etienne 2009):

d
dt

P
meta

(�S
)

=
∑
�S′ �=�S

(
P

meta
(�S′

)
R

(�S′, �S
)

− P
meta

(�S
)

R
(�S, �S′

))
(1)

where R is a matrix that contains the rates of transitions
R(�S, �S′) to go from a vector �S to another vector �S′. The
master equation (Eq. 1) describes the dynamics of the
species abundance distribution P

meta(�S) as a function of
time. This distribution contains much more information
than just the expectation values E

meta(Sn), used by,
for example, Vallade and Houchmandzadeh (2003) and
Volkov et al. (2003, 2007), which is just the first moment
of this distribution (Vanpeteghem et al. 2008), as we
will see below.

To specify the stochastic community model, one has
to determine the matrix R of transition rates. For
different models, the matrix R will have different el-
ements. For the random fission model which seems
impossible, there are two types of transitions, and the
matrix R can be written as a sum of two parts: R =
RDB + RS. The first part, RDB, describes a death event
immediately followed by a birth event. In such a death–
birth event, one individual dies (all JM individuals have
the same probability to be the one that dies), and
a second individual reproduces (all remaining JM − 1
individuals have the same probability to reproduce).
Note that this is exactly the death-birth event of the
point mutation model. If the first individual belongs
to a species with abundance k and the second indi-
vidual to a species with abundance i, the transition is
to a vector �S′ that can be written in terms of vector
�S as

�S′ = �SDB
k,i = �S − �ek + �ek−1 − �ei + �ei+1 (2)

which means that it differs from vector �S by having
a reduction by one of species with abundances k and
i and an increase by one of species with abundances
k − 1 and i + 1 (the unit vector �ek is one at position k
and zero elsewhere). The corresponding element of the

transition matrix RDB(�S, �SDB
k,i ), for which we use the

shorthand notation RDB
k,i (�S), is given by

RDB
(�S, �SDB

k,i

)
= RDB

k,i

(�S
)

= μ
kSk

JM

iSi

JM − 1
(3)

with μ the overall rate of death–birth events. Strictly
speaking, the transition rate 3 is only valid for k �= i (see
“Appendix 1” for the full derivation).

The second part of matrix R, denoted by RS, de-
scribes a speciation event. We describe a speciation
event as in Hubbell’s (2001) random fission model: An
individual is selected at random (all JM individuals have
the same probability to be selected). Suppose that this
individual belongs to a species with abundance k. Then
this species splits into two species, the first with abun-
dance i (where i < k) and the second with abundance
k − i, where each fission has equal probability, i.e., each
split (i, k − i) has probability 1

k−1 . The transition is to a

vector �S′ that can be written in terms of vector �S as

�S′ = �SS
k,i = �S − �ek + �ei + �ek−i (4)

which means that it differs from vector �S by having
one less species of abundance k and an increase in
the number of species with abundances i and k − i.
The corresponding element of the transition matrix
RS(�S, �SS

k,i), for which we use the shorthand notation

RS
k,i(

�S), is given by

RS
rf

(�S, �SS
k,i

)
= RS

k,i

(�S
)

= ν
kSk

JM

1

k − 1
(5)

with ν the overall speciation rate.
For comparison, in the point mutation model, the

death–birth events are also governed by Eq. 3, but
speciation only produces singleton species, that is, only
transitions to i = 1 are allowed:

RS
pm

(�S, �SS
k,i

)
= RS

k,i

(�S
)

= ν
kSk

JM
δ1(i) (6)

where δ1(i) = 1 for i = 1 and 0 otherwise.
The master equation (Eq. 1) together with the tran-

sition rates 3 and 5 fully define the neutral model with
random fission speciation. Rather than trying to solve
Eq. 1 for the random fission model which seems impos-
sible, we take an indirect route consisting of three steps.
First, we derive an equation for the expected number
of species with abundance n which we will denote by
E

meta(Sn). We can solve this equation exactly. This will
illustrate the main properties of the random fission
model, but cannot be used to fit the model to data.
To the latter end, we need the full sampling formula
for the abundance distribution of a local community
connected via limited dispersal to a metacommunity
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governed by random fission speciation. The second step
starts by proposing an Ansatz for the solution of Eq. 1
and show that it is consistent with the previously ob-
tained exact expression for E

meta(Sn). The third and
final step applies sampling theory (Etienne and Alonso
2005) to this Ansatz, assuming large metacommunity
size, in order to formulate the full sampling formula.

Equation for the expected number of species
with abundance n

The definition of the expected number of species with
abundance n in the metacommunity, E

meta(Sn), is

E
meta(Sn

) =
∑

�S
SnP

meta
(�S

)
Sn (7)

It is straightforward (see “Appendix 1”), by taking time
derivatives on both sides of this equation and using
Eq. 1 to find the stationary expectation of the number
of species with abundance n in the metacommunity:

E
meta(Sn

) =
n∏

i=1

ai (8a)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = ν

r1 + s1

ai = ri−1

2ri + si − ri+1ai+1 −
JM∑

j=i+1

s j
2

j−1

j∏
k=i+1

a j

for 1 < i < JM

aJM=
rJM−1

rJM + sJM

(8b)

It is easy to see that Eq. 8 can be computed numerically
by first calculating all ai for i from JM down to 1 and
then by calculating E

meta(Sn) for n from 1 to JM.
Note that these expressions only depend on JM and

the ratio of ν and μ, that is, ν
μ

which is the relative
rate of speciation and birth–death events, similar to the
point mutation model (Vallade and Houchmandzadeh
2003; Etienne et al. 2007a). Therefore, we will assume
for simplicity of notation that μ = 1 without loss of
generality. Figure 1 shows some numerical examples of
E

meta(Sn) for various values of ν and JM.
So far, we have been able to provide exact solutions

for the expectation values of Sn for the stationary
abundance distribution. Although these can be used
for comparison to data after incorporating sampling,
it does not allow full extraction of the information in

Fig. 1 Comparison of exact
(Eq. 8, white) and
approximate (Eq. 17a, black)
predictions for the relative
number of species in each
abundance class, i.e.,
E

meta(
∑

n∈class i Sn)/Emeta(S).
Abundance classes are
defined on a logarithmic
scale: the ith class being
[2i−1, 2i), e.g., the first class
contains abundance 1, the
second class abundances 2
and 3, the third abundances 4,
5, 6, and 7, the fourth
abundances 8 through 15, etc.
(Pueyo 2006)
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a sample abundance vector �S. For this, the full prob-
ability distribution, rather than just the first moment,
is required. This full probability, called the sampling
formula, enables one to extract information on individ-
ual species’ abundances as well as on their interdepen-
dencies. We therefore proceed to derive an extremely
good approximation to this sampling formula. We can
check the accuracy of this approximation by comparing
the expectation value E

meta (Sn) computed using this
approximation (and higher moments) to the exact so-
lution for E

meta(Sn).

Ansatz for the probability of the metacommunity
abundance vector �S

We start with an Ansatz which is justified elsewhere
(Haegeman and Etienne 2010). Here, we only note that
it is based on an approximation, for large JM, of the
exact formulas 8 and below we will show numerically
that it is an extremely good approximation for realistic
values of JM and ν which justifies our use of it. The
Ansatz is the following expression for the probability
of the metacommunity abundance distribution �S given
a fixed size JM:

P
meta

(�S∣∣JM

)
= 1

Z
(
ν JM, JM

)
JM∏

k=1

(
ν JM

)Sk

Sk!

=
(
ν JM

)SM

Z
(
ν JM, J M

)
JM∏

k=1

1

Sk! (9a)

where SM is the total number of species in the meta-
community and Sk is the number of species with abun-
dance k, both being stochastic variables as above (in
contrast to E

meta(Sn) and E
meta(SM) which are mo-

ments). The normalization constant Z (ν JM, JM ) is
given by

Z
(
ν JM, JM

) =
∑
�S|JM

JM∏
k=1

(
ν JM

)Sk

Sk!

=
JM∑

SM=1

(
ν JM

)SM

SM!
∑

�S|JM,SM

SM!∏JM
k=1 Sk!

=
JM∑

SM=1

(
ν JM

)SM

SM!
(

JM − 1

SM − 1

)

= ν JM 1 F1
(
1 − JM, 2, −ν JM

)
(9b)

where 1 F1(a, b , x) is the confluent hypergeometric
function and

(x
y

) = x!
y!(x−y)! is the usual notation of the

binomial coefficient. The second line is due to a classic
combinatorial result,

∑
�S|JM,SM

(
SM

�S
)

=
(

JM − 1

SM − 1

)
(10)

From Eq. 9, we can derive (see “Appendix 2”) that

E
meta(Sn

∣∣JM
) = ν JM

Z
(
ν JM, JM − n

)

Z
(
ν JM, JM

) (11)

and that

P
meta(SM

∣∣JM
) =

∑
�S|JM,SM

P
meta(�S∣∣JM

)

= 1

Z
(
ν JM, JM

)
(
ν JM

)SM

S M!
(

JM − 1

SM − 1

)
(12)

Hence

E
meta(SM

∣∣JM
) =

JM∑
SM=1

SMP
meta(SM|JM

)

=
JM∑

SM=1

SM

(
ν JM

)SM

SM!
(

JM − 1

SM − 1

)

= 1 F1
(
1 − JM, 1, −ν JM

)

1 F1
(
1 − JM, 2, −ν JM

) (13)

Furthermore, we find that

P
meta(�S∣∣JM, SM

) = P
meta

(�S∣∣JM
)

Pmeta
(
SM

∣∣JM
)

= 1(JM−1
SM−1

) SM!∏
k Sk! (14)

This is a very interesting result because it corre-
sponds exactly to the discrete version of MacArthur’s
(1957) broken-stick model of the distribution of species
abundances (see Etienne and Olff 2005)!

Scaling limit

We consider the scaling JM → ∞, ν → 0 such that√
ν JM is finite. We call the quantity

√
ν JM the fun-

damental biodiversity number in the random fission
model and denote it by θrf. We first study the distrib-
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ution of the number of species SM. In the scaling limit,
Eq. 12 becomes

P
meta(SM

∣∣JM → ∞) = 1

Z
(
θrf

) θ
2SM
rf

SM! (SM − 1
)! (15a)

with normalization constant Z (θrf ) given by

Z
(
θrf

) =
∞∑

SM=1

θ
2SM
rf

SM! (SM − 1
)! = θrf I1

(
2θrf

)
(15b)

where Iα(x) denotes the modified Bessel function of
the first kind for integer α and real-valued x; this is a
standard mathematical function for which most math-
ematical software packages have numerical routines.
Figure 2 shows that the mean and the mean ± 1 stan-
dard deviation of this distribution for SM as a function
of JM almost coincide, indicating that the distribution
is strongly peaked. This result can be obtained ana-
lytically; we refer to “Appendix 3” for the proof that,
for large JM and large θrf, the number of species SM is
normally distributed with mean and variance equal to
θrf and θrf

2 , respectively. For any θrf (but still in the limit
JM → ∞), we find that the expected number of species
in the metacommunity is given by (see “Appendix 3”):

E
meta(SM

∣∣JM → ∞) = θrf
I0

(
2θrf

)

I1
(
2θrf

) (16)
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Fig. 2 The expected total metacommunity richness as a function
of metacommunity size for the random fission model (red) and
the point mutation model (blue). Dashed lines indicate the varia-
tion in richness around the mean (±1 standard deviation). Mean
and standard deviations are computed from the full probability
distribution, Eqs. 29 and 30. The fundamental biodiversity con-
stant is set at θpm = θrf = 1,000

The expectation values of Sn, SkS�, . . .for large JM

can then be derived (see again “Appendix 4” for the
full derivation)

E
meta(Sn

∣∣JM
) ≈ θ2

rf

JM

√
1 − n

JM

I1
(
2θrf

√
1 − n

JM

)

I1(2θrf)

for large JM (17a)

E
meta(SkS�

∣∣JM
) ≈ θ4

rf

J2
M

√
1 − k+�

JM

I1
(
2θrf

√
1 − k+�

JM

)

I1
(
2θrf

)

for large JM (17b)

These approximations match exact numerical results
for the random fission model outlined above very well.
For example, Fig. 1 shows the extremely good match
of the approximate expectations E

meta(Sn) of Eq. 17a
with the exact expectation given in Eq. 8. Similarly,
the approximate second-order moments E

meta(SnSm)

of Eq. 17b are very close to the exact second-order
moments E

meta(SnSm), solutions of Eq. 1 (results not
shown). Because of this extremely good agreement, we
believe that we can use the approximations with great
confidence to explore the stationary properties of the
random fission model.

For the derivation of our sampling formula for
P

smp(�S|I, θrf, J) below, we need the probability distrib-
ution for the relative abundance vector �p. Equation 17
for large JM can be transformed in probability density
functions ρmeta(pi|SM), ρmeta(pi, pj|S M), ... for relative
abundances pi, pj, ... in the limit JM → ∞ as follows:
The probability that an individual belongs to a species

having abundance pi JM is
E

meta(Spi JM |JM,SM)

SM
. This prob-

ability becomes ρmeta(pi|SM)dpi in the limit JM → ∞
(with dpi ∼ 1

JM
). Therefore,

ρmeta(pi
∣∣SM

) = lim
JM→∞

JM
E

meta
(
Spi JM

∣∣JM, SM
)

SM

= (
SM − 1

)(
1 − pi

)SM−2 (18a)

Likewise,

ρmeta(pi, pj
∣∣SM

)

= lim
JM→∞

J2
M

E
meta

(
Spi JM Spj JM

∣∣JM, SM
)

SM
(
SM − 1

)

= (
SM − 1

)(
SM − 2

)(
1 − pi − pj

)SM−3 (18b)

Continuing this procedure, we find that

ρmeta( �p∣∣SM
) = (

SM − 1
)! (18c)
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Hence, all relative abundance vectors �p on SM

species are equally probable. Note that densities 18a
and 18b can be obtained from Eq. 18c by computing
marginal distributions.

The results for the metacommunity are summarized
in Table 1 where they can be compared with the results
for the point mutation model.

Sampling formula P
smp(�S) and sample expectations

E
smp(Sn)

The asymptotic formula 18c can be used to derive our
central result, i.e., the dispersal-limited sampling for-

mula (Alonso and McKane 2004; Etienne and Alonso
2005) for species abundances in a sample of size J
from a dispersal-limited local community (parame-
trized by parameter I) that receives immigrants from a
metacommunity undergoing random fission speciation
(parametrized by parameter θrf). The sampling formula
gives the probability for the vector �S = (S1, S2, ...SJ),
where each component Sn denotes the number of
species with abundance n, but it will be convenient
to also use in our notation the abundance vector �n =
(n1, n2, ..., nS) where each component ni denotes the
number of individuals of species i where the species are
arranged in an arbitrary order. The detailed derivation
of the sampling formula can be found in “Appendix 5”.

Table 1 Comparison of
random fission and point
mutation formulas for the
metacommunity

Quantity Formula

θrf
√

νrf JM (19)

θpm νpm (JM − 1) ≈ νpm JM (20)

P
meta
rf (�S|JM)

1

Z (νrf JM, JM)

∏
k

(νrf JM)Sk

Sk! = 1

Z (
θ2

rf

JM
, JM)

∏
k

θ
2Sk
rf

JSk
M Sk!

(21)

P
meta
pm (�S|JM)

JM!
(νpm JM)JM

∏
k

(νpm JM)Sk

kSk Sk! = JM!
(θpm)JM

∏
k

θ
Sk
pm

kSk Sk! (22)

E
meta
rf (Sn|JM) νrf JM

Z (νrf JM, JM − n)

Z (νrf JM, JM)
≈ θ2

rf

JM

√
1 − n

JM

I1

(
2θrf

√
1 − n

JM

)

I1(2θrf)
(23)

E
meta
pm (Sn|JM)

(JM
n

)
θpm

(n − 1)! (θpm)JM−n

(θpm)JM

≈ θpm

n

(
1 − n

JM

)θpm−1

(24)

P
meta
rf (�S|JM, SM)

SM!(JM−1
SM−1

) ∏
k

1

Sk! (25)

P
meta
pm (�S|JM, SM)

JM!
s̄(JM, SM)

∏
k

1

kSk Sk! (26)

E
meta
rf (Sn|JM, SM)

SM(JM−1
SM−1

) (J M−n−1
SM−2

) ≈ SM(SM − 1)

J M

(
1 − n

JM

)SM−2

(27)

E
meta
pm (Sn|JM, SM)

(JM
n

) (n − 1)! s̄(JM − n, SM − 1)

s̄(JM, SM)
(28)

P
meta
rf (SM|JM) 1

Z (νrf JM,JM)

(νrf JM)SM

SM!
(JM−1

SM−1

) ≈ 1

Z (θrf)

θ
2SM
rf

SM!(SM − 1)! (29)

P
meta
pm (SM|JM) s̄(JM, SM)

θ
SM
pm

(θpm)JM

(30)

E
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rf (SM|JM)

1 F1 (1 − JM, 1, −νrf JM)

1 F1 (1 − JM, 2, −νrf JM)
≈ θrf

I0(2θrf)

I1(2θrf)
(31)

E
meta
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∑JM
k=1

θpm

θpm + k − 1
= θpm

(
�(θpm + Jpm) − �(θpm)

)
(32)
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Here, we mention the result (see also Eq. 42 in
Table 2):

P
smp(�S∣∣I, θrf, J

)

=
(

J
−→n

)
1

(I)J
∏

k Sk!
n1∑

a1=1

. . .

nS∑
aS=1

[
S∏

i=1

s̄
(
ni, ai

)
ai!

]

× I Aθ S−A
rf

IA+S−1
(
2θrf

)

I1
(
2θrf

) (33)

Here, the I with a subscript denote modified Bessel
functions, and the I without a subscript denotes the

dispersal limitation parameter. Furthermore, A =
S∑

i=1
ai,

ai just being an index for the summations in Eq. 33,

S is the number of species in the sample, and Sk is
the number of species in the dataset that have abun-
dance k. The s̄(x, y) are the unsigned Stirling numbers
of the first kind and (x)y is the Pochhammer symbol
defined as

(x)y =
y∏

i=1

(x + i − 1) = 	 (x + y)

	 (x)

=
y∑

i=1

s̄ (y, i) xi (34)

and the multinomial coefficient
( J−→n

)
is defined as

(
J

−→n
)

= J!∏
i ni! (35)

Table 2 Comparison of random fission and point mutation formulas for a sample of size J

Quantity Formula

θrf
√

νrf JM (36)

θpm νpm(JM − 1) ≈ ν pm JM (37)

Metacommunity (No dispersal limitation)
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k Sk! θ
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For the expectation values we find (see “Appendix 6”):

E
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(46)

which is Eq. 44 in Table 2. This expression uses the
approximation to E

meta(Sn). Using the exact formula
would result in a much more complicated formula that
is only negligibly different from the approximation
(Fig. 1).

When dispersal is not limited (i.e., I → ∞), then we
have the random fission counterpart of the Ewens sam-
pling formula (Ewens 1972). This formula is provided
as Eq. 38 in Table 2. The associated expressions for
the expected number of species with abundance n in
the dispersal-unlimited sample is given in Table 2, as
Eq. 40. Derivations can be found in “Appendices 4
and 5”. For comparison, Table 2 also shows the
results for the point mutation model (Vallade and
Houchmandzadeh 2003; Etienne 2005; Etienne and

Alonso 2005) which has θpm = νpm JM where νpm is the
point speciation rate that is comparable to νrf. Note that
θpm is often written as ν̃pm

1−ν̃pm
(JM − 1) in the literature. In

“Appendix 7”, we explain this difference, but here, we
note that νpm and ν̃pm are practically identical because
they are very small and JM is very large.

Results

Random fission produces fewer abundant and fewer
rare species, but more intermediately abundant species
than point mutation with the same speciation rate ν

(Fig. 3). When θrf is set equal to θpm, then random
fission produces fewer abundant species than point
mutation (Fig. 3). With our definition of θrf, the SAD of
a sample becomes independent of metacommunity size,
only being dependent on the compound parameter θrf.
This is similar to the role of θpm in the point mutation
model. There is another similarity between the two θs
as well: when increasing θpm and θrf, the abundance
curves for point mutation and random fission shift in
the same way to higher abundances (Fig. 3).

The total species richness in the metacommunity
does not depend on JM in large metacommunities with
random fission speciation (Fig. 2). In contrast, in a
metacommunity with point mutation speciation, meta-
community size always controls total species richness.
Figure 4 shows the behavior of the SAD in a metacom-
munity with random fission, as a function of recruit-
ment limitation. When recruitment is severely limited,
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Fig. 3 Comparison of the metacommunity SADs for random
fission (Eq. 23, red) and point mutation (Eq. 24, blue) for various
values of the speciation rate ν (top row) and fundamental bio-
diversity number θ (bottom row). Metacommunity size is set at

JM = 300,000. The SADs are defined as the expected number of
species per unit of logarithmic abundance with base 2. In formula,
this means that we plot E

meta (
S′

n
) = n ln 2 × E

meta (Sn) on the y-
axis and the log2 of abundance n on the x-axis
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Fig. 4 Comparison of the
local community SADs
(defined as in Fig. 3) for
random fission (Eq. 44, red)
and point mutation (Eq. 45,
blue) for various values of
recruitment limitation I. The
fundamental biodiversity
constant is set at
θpm = θrf = 1,000. Sample
size is J = 300,000
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the SADs of the point mutation and random fission
models are very similar, suggesting that the mode of
speciation does not leave a noticeable signature on the
SAD in recruitment limited communities, but it does
when recruitment limitation does not play a role.

As an illustration of our new sampling formula, we
applied it to six tropical tree data sets (Volkov et al.
2005). Table 3 shows the parameter estimates obtained
by likelihood maximization. It also shows the results
obtained previously (Chave et al. 2006; Etienne et al.
2007b) for the point mutation model and compares the
two models based on Akaike weights. Figure 5 shows
the abundance distributions with the fitted models.
Clearly the model with random fission speciation never
performs significantly better than the point mutation
model. There are two cases where the performance is
similar.

First, Korup has as maximum likelihood estimates
an infinite θ and a very low m-value that corresponds
to the Ewens estimate for I. This is the value of I that
maximizes the Ewens sampling formula with parameter

I (instead of θ); this value is well known to solve the
equation:

S =
J∑

i=1

I
I + i − 1

= I (�(I + J) − �(I)) (47)

where � is the psi or digamma function (see also Eq. 32
for a similar expression). For Korup, which has S = 308
and J = 24591, this amounts to I = 49.5. When θ is
infinite, the mode of speciation is no longer important:
Every immigrant in the local community will be of
a new species. This is indistinguishable from a meta-
community (ruled by point mutation) with θpm = 49.5
(Etienne et al. 2006).

Second, for Sinharaja, the point mutation and ran-
dom fission models perform equally well, remarkably
with almost identical m-values (but different θ -values).
This suggests more strongly that there is extreme re-
cruitment limitation and metacommunity diversity is
high, in contrast to the values reported by Volkov

Table 3 Parameter estimates, maximum likelihood and model comparison for the fit of the two neutral models with different speciation
modes to six local community abundance data sets

Site Ja Sb Point mutation (pm)c Random fission (rf)c Comparisone

θpm m MLd θrf m MLd wpm wrf

BCI 21,457 225 47.67 0.093 −308.73 595.1 0.0029 −311.92 0.96 0.04
Korup 24,591 308 52.73 0.547 −317.04 ∞ 0.0020 −318.67 0.84 0.16
Pasoh 26,554 678 190.9 0.093 −359.38 1, 528 0.0098 −363.75 0.99 0.01
Sinharaja 16,936 167 436.8 0.0019 −252.93 927.6 0.0019 −252.88 0.49 0.51
Yasuni 17,546 821 204.2 0.429 −297.15 10,980 0.0111 −306.75 1.00 0.00
Lambir 33,175 1,004 285.6 0.115 −386.38 2,500 0.0111 −402.32 1.00 0.00

aSample size
bNumber of species observed
cThese are the dispersal limited versions of the pm and rf models
dThe logarithm of the maximum likelihood
eComparison between point mutation and random fission in terms of Akaike weights wi



Theor Ecol (2011) 4:87–109 97

Fig. 5 Species abundance
distributions of the six
tropical forest plots (bars)
with the maximum likelihood
expectations according to the
point mutation (dotted line)
and random fission (solid
line) models. Maximum
likelihoods and
corresponding parameters are
provided in Table 1. Binning
is as in Fig. 1
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Lambir

et al. (2005), who missed the slightly higher likelihood
optimum for high θ and low m (Etienne et al. 2007b).

The random fission model does not seem to pos-
sess the dual optima exhibited by the point mutation
model (Etienne et al. 2006). This is probably because
the random fission sampling formula does not have
the symmetry of the point mutation sampling formula
where infinite θ and infinite I have mathematically
identical effects. Figure 6 shows the likelihood surface
of the random fission model for BCI.

Although θrf and θpm are not directly comparable
because they are defined differently, their ratio tells us

Fig. 6 Loglikelihood surface of the (θrf, m)-parameter combina-
tion for the BCI data set

something about the relative values of the speciation
rates in the two models:

νrf < νpm if νpm <

(
θpm

θrf

)2

(48)

For Yasuni, the ratio of θpm and θ rf is the smallest
of all data sets (approximately 1

54 ) which means that
νrf < νpm if νpm < 0.0003. As values of νpm larger than
0.0003 are highly unlikely, we can conclude that random
fission must occur at a lower rate than point mutation
to fit the observed SAD.

As a numerical example, assume that metacom-
munity size in the neotropics is of order JM ≈ 1010

(Ricklefs 2003; Nee 2005). This means that, for Yasuni,
the corresponding speciation rates are νpm ≈ 10−8

and νrf ≈ 10−12. The average species longevities
are then (Ricklefs 2003) tpm ≈ −2 ln(2νpm) ≈ 102 and

trf ≈ ν
− 1

2
rf ≈ 106, and the expected total richness is

E
meta
rf (SM) ≈ 104 (see Eq. 31) and E

meta
pm (SM) ≈ 4 · 103

(see Eq. 32). We discuss these results below. Note
that all these speciation rates are community speci-
ation rates divided by community death–birth events
(remember we assumed the latter to be μ = 1). For an
estimate of the species-level speciation rates measured
in inverse generations, these numbers need to be multi-
plied by the average population size J M

Emeta(SM)
.

We also fitted the metacommunity sampling formula
to two data sets of metacommunity abundances. The
first consists of 41 plots of 1 ha in Panama (Condit
et al. 2002), and the second consists of 50 plots of
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Table 4 Parameter estimates, maximum likelihood, and model comparison for the fit of the two neutral models with different speciation
modes to two metacommunity abundance data sets

Metacommunity Ja Sb Point mutation (pm)c Random fission (rf)c Comparisone

θpm MLd θrf MLd wpm wrf

Panama (pooled sample) 16,292 759 164.7 −311.09 795.8 −795.51 1.00 0.00
Panama (repeated samples) 41 35.4 119.8 −3.4644 252.3 −3.5348 0.48 0.52
Western Ghats (pooled sample) 19,555 304 50.99 −298.65 308.5 −524.03 1.00 0.00
Western Ghats (repeated samples) 50 30.4 51.45 −5.9220 116.3 −6.1143 0.53 0.47

pooled sample all individuals from all plots are put into one large sample, repeated samples many samples are taken with one individual
from each plot and results are averaged over these samples
aSample size
bNumber of species observed; for the repeated samples this is the mean number of species
cThese are the dispersal unlimited versions of the pm and rf models
dThe logarithm of the maximum likelihood; for the repeated samples, this is the mean value
eComparison between point mutation and random fission in terms of (mean) Akaike weights wi

1 ha in the Western Ghats in India (Munoz et al. 2007;
Etienne 2009a). We did the analysis in two ways. First,
we simply pooled the data of all the plots into a single
sample. Second, we sampled a single individual from
each plot, recorded the number of species, repeated this
many times, and estimated θ from the averaged number
of species obtained (Etienne 2009a); loglikelihoods and
Akaike weights were obtained by averaging over their
values for each sample. The results are summarized
in Table 4. In the first, “pooled sample”, analysis, the
random fission model performed much worse than the
point mutation model for both data sets. Yet, in the
second, “repeated samples”, analysis, we find that the
point mutation model performs only marginally better.
We discuss this discrepancy below.

Discussion

In this paper, we have presented a full sampling formula
for the SAD in the neutral model with random fission
speciation, with and without recruitment limitation. In
contrast to Hubbell’s (2001) conjecture, the metacom-
munity abundance distribution (i.e., without recruit-
ment limitation) is not a zero-sum multinomial. In fact,
we have shown that the random fission mode of speci-
ation produces a SAD that is identical to the broken-
stick model of MacArthur (1957), when conditioned
on total metacommunity size and total metacommu-
nity species richness. An expression for the SAD (i.e.,
P

meta(�S|JM, SM)) for the discrete broken-stick (DBS)
model was given in Etienne and Olff (2005), and this
expression is mathematically identical to our Eq. 14.
Our Eq. 18c is the continuous form of the broken-
stick model (CBS), that is, in the limit of JM → ∞.
Thus, random fission speciation provides a mechanis-
tic explanation of this classic broken-stick model. In-
deed, random fission and random stick-breaking are

equivalent processes mathematically, but is not imme-
diately obvious that they lead to the same distribution
because the random fission model includes ecological
drift (random birth and death processes) whereas the
broken-stick model is not clearly linked to biological
processes.

Similarly, our dispersal-limited sampling formula
can be interpreted as a dispersal-limited broken-stick
model. Although the fits to data are not better than the
point mutation model (which produces the logseries),
adding dispersal limitation makes the fits much bet-
ter than found by Etienne and Olff (2005) for the
pure DBS model. We might therefore say that the
broken-stick model has been resurrected to some ex-
tent from the natural death, so longed for by its in-
ventor (MacArthur 1966). Cohen (1968) also showed
that the broken stick could be produced by alternative
models, but none of these were dynamical such as
our birth–death-speciation model. The random fission
model is also more general than these models because
it also predicts an SAD without conditioning on total
species number.

In contrast to another conjecture by Hubbell (2001),
the metacommunity abundance distribution is not gov-
erned by two parameters (νrf and JM), but by only
one just like in the point mutation model. This pa-
rameter, the random fission fundamental biodiversity
number, is defined as θrf = √

νrf JM. This definition of
θrf is different than that of θpm by a factor of

√
νrf. This

explains why Hubbell (2001) thought that two inde-
pendent parameters govern the random fission model:
He found with his simulations that fixing νrf JM did
not fully determine the abundance distribution. Had he
fixed

√
νrf JM, then he would have found that the SAD

was completely specified. Strictly, this is only true in
the limit of large JM that we are considering, but in
practice, this limit is always approximating the system
extremely well.
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We have compared the fit of the random fission
model against the point mutation model in three
different ways. First, we confronted six local com-
munity data sets with the dispersal-limited sampling
formulas. We found that the random fission model
never performed significantly better than the point
mutation model and did much worse in several cases.
However, this may be due to nonneutral recruitment
limitation (Jabot et al. 2008) obscuring the compari-
son of speciation modes. We therefore also compared
fits of the models to metacommunity data directly.
Unfortunately, large metacommunity data sets, where
individuals are randomly sampled across a large spatial
scale, are scarce. At best, there are a limited number of
local samples, e.g., 41 and 50 in the data sets we used
here. Although we recognize that the sampling effort
for these data sets is appreciable, these data sets require
some restrictive assumptions in their analysis. Our sec-
ond comparison consisted of pooling all the samples as
if the individuals were randomly sampled rather than
sampled in local clusters, thereby ignoring spatial struc-
ture. Here, the random fission model performed mis-
erably. Our third comparison consisted of repeatedly
sampling one individual from each plot and averaging
results over all these small samples (of sizes 41 and 50),
thereby ignoring that the data showed an actual meta-
community richness that was much higher than that of
each of those samples. In this case, random fission and
point mutation performed equally well. Remarkably,
the maximum likelihood estimates for θpm are roughly
of the same order of magnitude for the pooled sample
and repeated samples, whereas the estimates for θrf are
three-fold smaller in the repeated samples than in the
pooled samples. This suggests that the random fission
model does not produce the correct scaling with sample
size and even more so because the sample size in the
pooled sample is larger than a true metacommunity
sample with the same number of species, due to re-
cruitment limitation. Thus, we conclude that the point
mutation model really seems a much better description
of the metacommunity than random fission model. The
relatively reasonable fit of the random fission model to
some of the local community data sets is only achieved
by allowing for strong (and arguably unrealistic) dis-
persal limitation which eradicates the signature of the
speciation mode (recall Fig. 4).

Fitting a model to a single snapshot of species abun-
dances is a weak test of the model (McGill 2003; McGill
et al. 2006, 2007) because many different mechanisms
may lead to similar patterns in SADs (Cohen 1968;
Purves and Pacala 2005). However, it is a test that a
serious model should pass. Not all models produce a
realistic SAD and failure to do so is a strong reason

to reject a model. Here, we have confirmed earlier
findings (Etienne et al. 2007b) that SADs can have
resolving power with respect to explanatory models,
and particularly the speciation mode leaves a clear sig-
nature on the SAD (see Fig. 7, which will be discussed
further below). We have shown that the random fission
mode never performs significantly better than the point
mutation mode; indeed, it performs much worse for
almost all data sets and the metacommunity data sets
in particular. This suggests that point mutation is a
more likely mode of speciation in tropical forests than
random fission. However, random fission predicts more
reasonable speciation rates, metacommunity richness,
and species longevities based on the fitted parame-
ters. Perhaps the estimates for species richness seem
somewhat high, suggesting that the metacommunity for
the Yasuni plot is of the order of the entire Amazon,
but such a continental extent of the metacommunity
may be quite reasonable taking into account recent
evidence for long-distance dispersal (Jabot and Chave
2009). Thus, neither of the two models is capable of
making more accurate predictions of various quantities
or patterns. For now, this leads us to reject both models
in their current, spatially implicit, form as plausible
explanations of community structure. We do want to
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Fig. 7 Metacommunity SADs (as defined in Fig. 3) for
four different speciation modes: individual-level point muta-
tion (Eq. 24, solid blue line), species-level point mutation
(Etienne et al. 2007b, dashed blue line), individual-level random
fission (Eq. 8/Eq. 23, solid red line), and species-level random
fission (dashed red line). The solution for E

meta(Sn) in the
latter case is, like the individual-level random fission model,
given by Eq. 8 but with si = νrf

JM
. Metacommunity size is set

at JM = 100,000 and expected metacommunity richness is set
at E

meta(S M) = 1,000. Expected metacommunity richness is the
area under the curve for all models because of our definition
of the SAD:

∫
E

meta (S′
n)d log2 n = ∫

E
meta(Sn)n ln 2 d log2 n =∫

E
meta(Sn)dn = E

meta(SM)
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caution against too rapid definite conclusions for the
following reasons.

The performance of a model in producing realistic
SADs depends on all ingredients of the model (Etienne
2007), not just the one under consideration, such as
the speciation mode in this paper. We have studied
the speciation mode in a neutral context, so the per-
formance is also affected by the neutrality assump-
tion. Random fission or point mutation or both may
perform better or worse in a nonneutral setting, or
even have negligible influence. Zillio and Condit (2007)
have, however, found that many communities, neutral
or non-neutral, are primarily driven by the process of
how new species enter the community. In our opinion,
this justifies our study of the influence of speciation
in the simplest context where species differences do
not play a role, but we do not rule out the possibility
that the mode of speciation may lead to more or less
realistic predictions under nonneutral conditions. Only
by formulating different models and comparing their
predictions to data can we get a feel for the behavior
of these models and for how informative SADs are for
inferring mechanism.

Speciation is not the only way new species can enter
the community: Immigration is another. Interestingly,
the sampling formula resulting from point mutation
speciation also describes long-distance dispersal (see,
e.g., Etienne et al. 2007a) which may leave a more
profound signature than speciation. Only a model that
includes both long-distance dispersal and speciation
will be able to distinguish the relative contribution
of these processes. An analytically tractable spatially
implicit model with long-distance dispersal and random
fission speciation is not yet available, let alone a spa-
tially explicit model. Nevertheless, a spatially explicit
neutral model with long-distance (fat-tailed) disper-
sal and point mutation speciation has been studied
(Rosindell and Cornell 2009) using coalescence tech-
niques (Rosindell et al. 2008). It has been shown
that speciation rates required to yield predictions on
species–area relationships that are in agreement with
observations are much lower (i.e., more realistic) than
in models with Gaussian dispersal kernels (Rosindell
and Cornell 2007). This suggests that long-distance dis-
persal is an important force shaping ecological commu-
nities and can mimic the effect of speciation, but does
not rule out that speciation still leaves a signature on
community structure. Unfortunately, coalescence does
not seem compatible with random fission speciation
because random fission is not time reversible, and
therefore, this powerful simulation method cannot be

employed to further study the effect of random fission
speciation on community structure in a spatially explicit
context. Perhaps new analytical techniques based on
functional differential equations (O’Dwyer et al. 2009)
will prove useful.

Random fission assigns a very low probability to
samples with a few very abundant species, even more so
than point mutation. This explains why the fit to data is
worse for the former speciation mode and the fact that
the best fitted model does not seem to follow unimodal
SAD data in some cases (even though the unimodal
shape is more characteristic for random fission than for
point mutation, see Figs. 3 and 4). Etienne et al. (2007b)
pointed out that a visual goodness-of-fit estimate may
be deceiving and logtransformed the data and pre-
dictions to make this clear. Here, logtransformation
supports the same conclusion (not shown). At the same
time, random fission predicts fewer rare species in
the metacommunity than point mutation and therefore
produces a more lognormal-like shaped SAD which
is believed to be a better description by many ecolo-
gists (Preston 1948, 1962; McGill 2003). The fit to the
metacommunity data sets suggests that this advantage
does not offset the disadvantage at large abundances. In
fact, this advantage may not be so advantageous after
all because the random fission model even seems to
predict too few rare species.

For Hubbell’s neutral models ν is a constant spe-
ciation rate per individual (for both point mutation
and random fission), in contrast to common practice in
speciation research where the speciation rate is usually
a rate per species (Stanley 1979; Etienne and Apol
2009). The results in this paper apply to Hubbell’s
model. Assuming a constant speciation rate per species
in the neutral model with point mutation has also been
studied (Etienne et al. 2007b), and it was found that
this assumption can make a large difference. Therefore,
the remaining combination of random fission specia-
tion with a constant speciation rate at the species level
appears to be a necessary last step to get a complete
picture. In fact, while a constant speciation rate per
individual seems a logical first choice for the individual-
level process of point mutation, a constant speciation
rate per species seems more obvious for the species-
level process of random fission. The community will
be less diverse than in the individual-level case because
abundant species will be less likely to undergo fission.
For the same reason, the species-level point mutation
model produced less diversity than the individual-level
point mutation model (Etienne et al. 2007a). Figure 7
shows a numerical comparison of all four speciation
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modes. One observes that species-level random fission
is similar to individual-level random fission but has
a bit more abundant and rare species. Because very
abundant species are not only more likely than in
individual-level random fission model but also than in
the individual-level point mutation model (this can only
be seen after logtransforming Fig. 7), it might be that
a model with species-level random fission speciation
provides a good fit to SAD data as well as reasonable
predictions for speciation rates and species longevities.
We have not been able to find a sampling formula for
this model, so this remains an open question.

We have presented analytical results for the spatially
implicit model with the random fission mode of specia-
tion. These are now on a par with analytical results for
point mutation, allowing future studies of community
models to compare both alternatives.
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Appendix 1: Derivation of the dynamics of E
meta(Sn)

and the corresponding stationary
distribution

The dynamics of E
meta(Sn) can be split into two parts

d
dt

E
meta(Sn

) = dDB

dt
E

meta(Sn
) + dS

dt
E

meta(Sn
)

(49)

First, we consider the first part: dynamics due to death–
birth events. The transition rate is given by

RDB
k,i

(�S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ
kSk

JM

iSi

JM − 1
if k �= i

μ
k2Sk

(
Sk − 1

)

JM
(
JM − 1

) if k = i.
(50)

The case k = i takes into account only those events in
which the dead and newborn individual belong to a
different species. If not, the death–birth event has no
net effect.

Species with abundance n disappear (S′
n − Sn = −1)

in transitions RDB
k,i

with k = n: an individual in a species with abundance
n dies

with i = n: an individual in a species with abundance
n reproduces

Species with abundance n appear (S′
n − Sn = 1) in tran-

sitions RDB
k,i

with k = n + 1: an individual in a species with abun-
dance n + 1 dies,

with i = n − 1: an individual in a species with abun-
dance n − 1 reproduces.

Hence,

dDB

dt
E

meta(Sn
)

=
∑

�S

∑
k,i

P
meta

(�S
)

RDB
k,i

(�S
)

× ( (
δk,n + δi,n

)
(−1) + (

δk,n+1 + δi,n−1
)
(+1)

)

=
∑

�S
P

meta
(�S

) (∑
k

(
RDB

k,n−1

(�S
)

− RDB
k,n

(�S
) )

+
∑

�

(
RDB

n+1,i

(�S
)

− RDB
n,i

(�S
)))

=
∑

�S
P

meta
(�S

) (
rn−1Sn−1 + rn+1Sn+1 − 2rnSn

)

= rn−1E
meta(Sn−1

) + rn+1E
meta(Sn+1

)

− 2rnE
meta(Sn

)
(51)

where we defined

rn = μ
n(JM − n)

JM(JM − 1)
(52)

Note that we implicitly assumed that n > 1 and n <

JM; the extension to the cases n = 1 and n = JM is
straightforward.

Next, we consider the second part of Eq. 49: dy-
namics due to speciation events. The transition rate is
given by

RS
k,i

(�S
)

= ν
kSk

JM

1

k − 1
. (53)

Species with abundance n disappear (S′
n − Sn = −1) in

transitions RS
k,i(

�S) with k = n. Species with abundance

n appear (S′
n − Sn = 1) in transitions RDB

k,i (�S) with n = i
or n = k − i. Note that for k > n and k �= 2n, there
are two fission events that lead to a new species with
abundance n and that for k = 2n, there is one fission
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event that leads to two new species with abundance n.
Hence,

dS

dt
E

meta(Sn
)

=
∑

�S

∑
k,i

P
meta

×
(�S

)
RS

k,i

(�S
) (

δk,n(−1) + (
δi,n + δi,k−n

)
(+1)

)

=
∑

�S
P

meta
(�S

)

×
(∑

i

−RS
n,i

(�S
)

+
∑

k

(
RS

k,n

(�S
)

+ RS
k,k−n

(�S
)))

=
∑

�S
P

meta
(�S

)(
− snSn +

∑
k>n

2
k−1 skSk

)

= −snE
meta(Sn

) +
∑
k>n

2
k−1 skE

meta
(
Sk

)
(54)

where we defined

sn = ν
n

JM
(55)

Note that we implicitly assumed that n > 1 and n <

JM; the extension to the cases n = 1 and n = JM is
straightforward.

Summing Eqs. 51 and 54 yields

d
dt

E
meta(S1) = −2r1E

meta(S1) + r2E
meta(S2)

+
JM∑
i=2

2
i−1 siE

meta(Si) (56a)

d
dt

E
meta(Sn) = rn−1E

meta(Sn−1) − (2rn + sn)E
meta(Sn)

+ rn+1E
meta(Sn+1) +

JM∑
i=n+1

2
i−1 siE

meta(Si)

for 1 < n < JM (56b)

d
dt

E
meta(SJM ) = rJM−1E

meta(SJM−1
)

− (
rJM + sJM

)
E

meta(SJM

)
(56c)

Equations 56a, 56b, and 56c keep the total number of
individuals in the community constant, as required:

d
dt

JM∑
n=1

nE
meta(Sn

) = 0 (57)

Furthermore, the total expected species richness
satisfies

d
dt

E
meta(S) = d

dt

JM∑
n=1

E
meta(Sn

)

= −r1E
meta(S1

) +
JM∑

n=2

snE
meta(Sn

)
(58)

where the first term describes species extinction and the
second term describes speciation.

Equations 56a, 56b, and 56c are closed in E
meta(Sn),

that is, they do not contain expectations such as
E

meta(SnSm). This seems to be a general property of
neutral models (Vanpeteghem et al. 2008). Similarly,
we can derive the dynamical equations for the second-
order moments E

meta(SnSm), which are again closed,
that is, they do not contain third- or higher-order mo-
ments.

The equilibrium solution of Eqs. 56a, 56b, and 56c
can be found most easily by setting Eqs. 56b, 56c, and

58 to zero, remembering that
JM∑

n=1
nE

meta(Sn) = JM and

then solving for ai defined by

ai = E
meta

(
Sn

)

Emeta
(
Sn−1

) (59)

This yields the following expression for E
meta(Sn):

E
meta(Sn

) =
n∏

i=1

ai (60a)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = ν

r1 + s1

ai = ri−1

2ri + si − ri+1ai+1 −
JM∑

j=i+1

s j
2

j−1

j∏
k=i+1

a j

for 1 < i < JM

aJM=
rJM−1

rJM + sJM

(60b)

where a1 results from setting Eq. 58 to zero, aJM from
setting Eq. 56c to zero, and ai for 1 < i < JM by setting
Eq. 56b to zero.
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Appendix 2: Derivation of E
meta(Sn|JM)

from the Ansatz

E
meta(Sn|JM) follows in a straightforward way from the

Ansatz for P
meta(�S|JM):

E
meta(Sn|JM) =

∑
�S|JM

SnP
meta(�S|JM)

= 1

Z (ν JM, JM)

∑
�S|JM

Sn

∏
k

(ν JM)Sk

Sk!

= ν JM

Z (ν JM, JM)

∑
�S|JM

(ν JM)Sn−1

(Sn − 1)!
∏
k�=n

(ν JM)Sk

Sk!

= ν JM

Z (ν JM, JM)

∑
�S|JM−n

∏
k

(ν JM)Sk

Sk!

= ν JM
Z (ν JM, JM − n)

Z (ν JM , JM)
(61)

Appendix 3: Derivation of the distribution, mean,
and variance of the total number
of species SM for large θrf

We first compute the mean and variance of the number
of species SM in the metacommunity for large θrf. We
have

E
meta(SM|JM → ∞) = 1

Z (θrf)

∞∑
SM=1

SM θ
2SM
rf

SM!(SM − 1)!

= θrf
I0(2θrf)

I1(2θrf)
(62a)

E
meta(S2

M|JM → ∞) = 1

Z (θrf)

∞∑
SM=1

S2
Mθ

2SM
rf

SM!(SM − 1)!

= θ2
rf + θrf

I0(2θrf)

I1(2θrf)
(62b)

The asymptotic behavior of the Bessel functions Iα(x)

is given by

Iα(x) = ex

√
2πx

(
1 − 4α2 − 1

8
x−1 + O(x−2)

)

as x → ∞. (63)

where we use the big O notation to describe the asymp-
totic behavior of a function. Hence,

I0(x)

I1(x)
= 1 + 1

2
x−1 + O(x−2) as x → ∞ (64)

so that

E
meta(SM|JM → ∞) = θrf + θ0

rf

4
+ O(θ−1

rf )

as θrf → ∞ (65a)

E
meta(S2

M|JM → ∞) = θ2
rf + θrf + O(θ0

rf)

as θrf → ∞. (65b)

For the variance,

Varmeta(SM|JM → ∞)

= E
meta(S2

M|JM → ∞) − (
E

meta(SM|JM → ∞)
)2

= θ2
rf + θrf − θ2

rf − θrf

2
+ O(θ0

rf)

= θrf

2
+ O(θ0

rf) as θrf → ∞. (66)

The asymptotic behavior of the distribution
P

meta(SM|JM → ∞) for the number of species SM

can be analyzed further. Taking the logarithm of
Eq. 15a,

ln
(
P

meta(SM|JM → ∞)
)

= (2SM − 1) ln θrf − ln I1(2θrf) − ln SM! − ln(SM − 1)!
(67)

and using asymptotic formulas for the Bessel function
and the factorial (Stirling’s formula),

ln Iα(x) = x + O(ln x) as x → ∞ (68a)

ln(n!) = n ln n − n + O(ln n) as n → ∞ , (68b)

we get

ln
(
P

meta(SM|JM → ∞)
) = 2SM ln θrf−2θrf−2SM ln SM

+ 2SM + O(ln SM, ln θrf)

as SM, θrf → ∞. (69)

The expression in the first line, considered as a
function of SM , has a maximum at θrf. Developing this
function up to second order in SM − θrf, we get

ln
(
P

meta(SM|JM → ∞)
) = − (SM − θrf)

2

θ rf

+O
(
(SM − θrf)

3
)

(70)

and hence,

P
meta(SM|JM → ∞) ∼ e− (SM−θrf)

2

θrf for large θrf. (71)

Thus, for large θrf the distribution P
meta(SM|JM → ∞)

for the number of species SM is normally distributed,

with mean θrf and standard deviation
√

θrf
2 .
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Appendix 4: Derivation of the approximation
to E

meta(Sn|JM ) and E
meta(Sk S�|JM)

We start by computing the expectations of the number
of species with abundance n in the metacommunity and
of SkS� conditional on metacommunity size JM and
total number of species SM. First, consider the trivial
case that SM = 1. The abundance of the only species
present is equal to the metacommunity size. Hence,

E
meta(Sn|JM, SM = 1) = 0 for n < JM

E
meta(SJM |JM, SM = 1) = 1 (72)

Next, consider the case that SM ≥ 2. We have

E
meta(Sn|JM, SM) =

∑
�S|JM,SM

SnP
meta
rf (�S|JM, SM)

= SM!(JM−1
SM−1

)
∑

�S|JM,SM

Sn∏
k Sk!

= SM(JM−1
SM−1

)
∑

�S|JM,SM

(SM − 1)!
(Sn − 1)! ∏k�=n Sn!

= SM(JM−1
SM−1

)
(

JM − n − 1

SM − 2

)

×
∑

�S|JM−n,SM−1

P
meta(�S|JM − n, SM − 1)

= SM(JM−1
SM−1

)
(

JM − n − 1

SM − 2

)
. (73)

Assuming that JM is large we find

E
meta(Sn|JM, SM, JM � SM)

= SM
(SM − 1)!(JM − S M)!

(JM − 1)!
× (JM − n − 1)!

(SM − 2)!(JM − n − SM + 1)!

≈ SM(SM − 1)
(JM − n)SM−2

JSM−1
M

= SM(SM − 1)

JM

(
1 − n

J M

)SM−2
(74)

Similarly, one can compute the expectation of
higher-order moments of Sn . We illustrate this for the
expectation E

meta(SkS�|JM, SM) with k �= �. First, con-
sider the case with SM = 2. The abundances of the two

species present should sum up to the metacommunity
size, k + � = JM. Hence,

E
meta(SkS�|JM, SM = 2) = 0 if k + � �= JM

E
meta(SkS�|JM, SM = 2) = 2

JM − 1
if k + � = JM.

(75)

Next, consider the case with SM ≥ 3. We have

E
meta(SkS�|JM, SM)

=
∑

�S|JM,SM
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= SM!(JM−1
SM−1

)
∑
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. (76)

Assuming that JM is large leads to

E
meta(SkS�|JM, SM, JM � SM)

= SM (SM − 1)
(SM − 1)!(JM − SM)!

(JM − 1)!
× (JM − k − � − 1)!

(SM − 3)!(JM − k − � − SM + 2)!

≈ SM(SM − 1)2(SM − 2)
(JM − k − �)SM−3

JSM−1
M

= SM(SM − 1)2(SM − 2)

J2
M

(
1 − k + �

JM

)SM−3
(77)

Now we are ready to compute the same quantities
without conditioning on SM. The number of species
with JM individuals, SJM , is different from zero only if
there is a single species in the community. The expected
number of species E(SJM |JM) is therefore equal to the
probability that there is only one species in the commu-
nity, P(SM = 1) = θrf

I1(2θrf)
. To compute the expectation

E(Sn|JM) for n < JM, we only have to consider com-
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munities with at least two species. Assuming that JM

is large, we have

E(Sn|JM)

≈
JM∑

SM=2

E(Sn|JM, SM)P(SM|JM → ∞)

≈
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1
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(78)

The product SkS� with k + � = JM is different from
zero only for communities with two species, one with
abundance k and the other with abundance �. Hence,
the expectation E(SkS�|JM) with k + � = JM has only
contributions from two-species communities. To com-
pute the expectation E(SkS�|JM) with k + � < JM, we
only have to consider communities with at least three
species. Assuming that JM is large, we have
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(79)

Appendix 5: Derivation of the sampling formula
P

smp( �S|I, θrf, J)

The derivation starts with the general formula for a
dispersal-limited sample (Etienne and Alonso 2005)
where we make the conditioning on SM explicit:

P
smp(�S|SM, I, θrf, J)

=
(

J
−→n

)
1

(I)J

∫
∑ �p=1

SM∏
i=1

(Ipi)ni
ρ( �p|SM) d �p (80)

By multiplying with P
meta(SM|JM → ∞) and summing

over all SM, we find

P
smp(�S|I, θrf, J)

=
∞∑

SM=S

P
meta(SM|JM → ∞)

SM!
(SM − S)! ∏J

k=1 Sk!
× P(�S|SM, I, θrf, J)

=
(

J
−→n

)
1

(I)J

∞∑
SM=S

P
meta(SM|JM → ∞)

× SM!
(SM − S)! ∏J

k=1 Sk!

×
∫

∑ �p=1

SM∏
i=1

(Ipi)ni
ρmeta( �p|SM) d �p (81)

We can now substitute Eq. 18c and use the Stirling
number formulation of the Pochhammer symbol,
Eq. 34,

P
smp(�S|I, θrf, J)

=
(

J
−→n

)
1

(I)J
∏

k Sk!
∞∑

SM=S

P
meta(SM|JM → ∞)

× SM!(SM − 1)!
(SM − S)!

n1∑
a1=1

. . .

nS∑
aS=1

[
S∏

i=1

s̄(ni, ai)

]
I A

×
∫

∑ �p=1

[
SM∏
i=1

pai
i

]
d �p (82)

with A = ∑
i ai. Next we evaluate the integral,

∫
∑ �p=1

[
SM∏
i=1

pai
i

]
d �p =

∏SM
i=1 ai!

(A + SM − 1)!

=
∏S

i=1 ai!
(A + SM − 1)! (83)
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because ai = 0 for all species that are not present in the
sample. Substituting this and Eq. 12, we obtain

P
smp(�S|I, θrf, J)

=
(

J
−→n

)
1

(I)J
∏

k Sk!
∞∑

SM=S

θ
2SM
rf

Z (θrf)(SM − S)!

×
n1∑

a1=1

. . .

nS∑
aS=1

[
S∏

i=1

s̄(ni, ai)

]
I A ∏S

i=1 ai!
(A + SM − 1)! (84)

The sum over SM can be expressed in terms of the
modified Bessel function of the first kind,

∞∑
SM=S

θ
2SM
rf

(SM − S)!(A + SM − 1)! = θ S−A+1
rf IA+S−1(2θrf)

(85)

Substituting this and Eq. 15b in Eq. 84, we obtain our
final result (Eq. 33):

P
smp(�S|I, θrf, J)

=
(

J
−→n

)
1

(I)J
∏

k Sk!
n1∑

a1=1

. . .

nS∑
aS=1

[
S∏

i=1

s̄(ni, ai)ai!
]

× I Aθ S−A
rf

IA+S−1(2θrf)

I1(2θrf)
(86)

This formula can be evaluated numerically, similarly
to the sampling formula for the point mutation model
(Etienne 2005). If there is no dispersal limitation (i.e.,
let I → ∞), we have

P
smp(�S|I → ∞, θrf, J)

=
(

J
−→n

) ∞∑
SM=S

P
meta(SM|JM → ∞)

SM!
(SM − S)! ∏J

k=1 Sk!

×
∫

∑ �p=1

SM∏
i=1

pni
i ρmeta( �p|SM) d �p

=
(

J
−→n

) ∞∑
SM=S

θ
2SM
rf

SM! (SM − 1)!

× SM!(SM − 1)!
(SM − S)! ∏J

k=1 Sk!

∏S
i=1 ni!

(J + SM − 1)!

= J!∏J
k=1 Sk!

1

θrf I1(2θrf)

∞∑
SM=S

θ
2SM
rf

(SM − S)!(J + SM − 1)!

= J!∏J
k=1 Sk!

θ S−J
rf

IJ+S−1(2θrf)

I1(2θrf)
(87)

where in the third line we have used Eq. 85.

Appendix 6: Derivation of E
smp(Sn|I, θrf, J)

We derive E
smp(Sn|I, θrf, J) (for n < J ) by following

Alonso and McKane (2004) and Etienne and Alonso
(2005). We take a dispersal-limited sample from the
metacommunity where the density of species with rel-
ative abundance p in the metacommunity with SM

species is given by SMρmeta(p|SM):

E
smp(Sn<J|I, θrf, J)

=
(

J
n

) ∞∑
SM=1

P
meta(SM|JM → ∞)

×
∫ 1

0

(Ip)n (I (1 − p))J−n

(I)J
SMρmeta(p|SM)dp

=
(

J
n

) ∞∑
SM=1

1

Z (θrf)

θ
2SM
rf

SM! (SM − 1)!

×
∫ 1

0

(Ip)n (I (1 − p))J−n

(I)J
SM(SM − 1)(1 − p)SM−2dp

=
(

J
n

)
1

(I)J Z (θrf)

n∑
a1=1

J−n∑
a2=1

s̄(n, a1)s̄(J − n, a2)Ia1+a2

×
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SM=2

θ
2SM
rf

(SM − 1)! (SM − 2)!
∫ 1

0
pa1 (1 − p)a2+SM−2 dp

=
(

J
n

)
1

(I)J Z (θrf)

n∑
a1=1

J−n∑
a2=1

s̄(n, a1)s̄(J − n, a2)	(a1 + 1)

× Ia1+a2
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SM=2

θ
2SM
rf

(SM − 1)! (SM − 2)!
	 (a2 + SM − 1)

	 (a1 + a2 + SM)

=
(

J
n

)
θ4

rf

(I)J Z (θrf)

n∑
a1=1

J−n∑
a2=1

s̄(n, a1)s̄(J − n, a2)

× a1!a2!
(a1 + a2 + 1)!

× Ia1+a2
1 .1 F2(a2 + 1, {2, a1 + a2 + 2}, θ2

rf) (88)

We can also retain the integral (instead of writing it in
terms of Stirling numbers) and write

E
smp(Sn<J|I, θrf, J)

=
(

J
n

)
1

Z (θrf)

∫ 1

0

(Ip)n (I (1 − p))J−n

(I)J
(1 − p)−2

×
∞∑

SM=2

(
θ2

rf (1 − p)
)SM

(SM − 1)! (SM − 2)!dp
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=
(

J
n

)
θ3

rf

Z (θrf)

∫ 1

0

(Ip)n (I (1 − p))J−n

(I)J

1√
1 − p

× I1

(
2θ rf

√
1 − p

)
dp (89)

Alternatively, we can directly use our sampling formula
to obtain

E
smp(Sn<J|I, θrf, J)

=
∑

�S
P

smp(�S|I, θrf, J)Sn

=
(

J
n

)
1

(I)J I1(2θrf)

J−n∑
k=1

n∑
a1=1

J−n∑
a2=k

s̄(n, a1)s̄(J − n, a2)

× a1!a2! (a2 − 1)!
k! (k − 1)! (a2 − k)! Ia1+a2

Ia1+a2+k (2θrf)

θ
a1+a2−k−1
rf

(90)

All these expressions can be shown to be mathemat-
ically identical.

If there is no dispersal limitation, these equations can
be simplified. Equation 88 reduces to

E
smp(Sn|I → ∞, θrf, J)

=
(

J
n

) ∞∑
SM=1

P
meta(S M|JM → ∞)

×
∫ 1

0
pn (1 − p)J−n SMρ(p|SM)dp

=
(

J
n

) ∞∑
SM=1

1

Z (θrf)

θ
2SM
rf

SM! (SM − 1)!

×
∫ 1

0
pn (1 − p)J−n SM(SM − 1)(1 − p)SM−2dp

=
(

J
n

)
1

Z (θrf)

∞∑
SM=2

θ
2SM
rf

(SM − 1)! (SM − 2)!

×
∫ 1

0
pn (1 − p)J−n+SM−2 dp

=
(

J
n

)
1

Z (θrf)

∞∑
SM=2

θ
2SM
rf

(SM − 1)! (SM − 2)!

× 	 (J − n + SM − 1) 	 (n + 1)

	 (J + SM)

= θ3
rf

J + 1
1 F2(J − n + 1, {2, J + 2}, θ2

rf)

I1 (2θrf)
(91)

where 1 F2(a, {b , c}, x) is the generalized hypergeomet-
ric function.

Likewise, Eq. 89 reduces to

E
smp(Sn|I → ∞, θrf, J) =

(
J
n

)
θ3

rf

Z (θrf)

∫ 1

0

pn(1 − p)J−n

√
1 − p

× I1

(
2θrf

√
1 − p

)
dp (92)

and Eq. 90 reduces to

E
smp(Sn|I → ∞, θrf, J)

= J!
I1(2θrf)

J−n∑
k=1

(J − n − 1)!
k! (k − 1)! (J − n − k)!

IJ+k (2θrf)

θ J−k−1
rf

(93)

Appendix 7: The fundamental biodiversity number θ

We treated the death–birth process and the speciation
process as decoupled processes. The point mutation
mode of speciation, however, was originally envisioned
as a birth event where a crucial mutation had caused a
new species to arise, and therefore, speciation and birth
are related to one another. If the death–birth rate is μ̃

and the probability of a birth resulting in an individual
of a new species is ν̃pm, then the transition rates for the
point mutation model can be written as:

RDB(�S, �SDB
k,i ) = RDB

k,i (�S) = μ̃(1 − ν̃pm)
kSk

JM

iSi

JM − 1
(94)

and

RS
pm(�S, �SS

k,i) = RS
k,i(

�S) = μ̃̃νpm
kSk

JM
δ1(i) (95)

These transition rates are identical to the ones in
Eqs. 3 and 6 if we set

μ = μ̃(1 − ν̃pm) (96a)

νpm = μ̃̃νpm (96b)

Hence, we observe that a simple transformation of the
parameters makes the equations identical.

The fundamental biodiversity number θ is defined in
the point mutation model as the number of speciation
events per birth event, or the ratio of the speciation
rate and the per capita birth rate. Because the per
capita birth rate is the overall death–birth rate divided
by the total number of individuals after a death event,
JM − 1, we have for the model where the processes of
speciation and death–birth are decoupled, the following
formula for θpm

θpm = νpm
μ

JM−1

= νpm (JM − 1)

μ
≈ νpm JM

μ
(97)
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while in the model where they are related, θpm is ex-
pressed as

θpm = μ̃̃νpm
μ̃(1−ν̃pm)

JM−1

= ν̃pm

1 − ν̃pm
(JM − 1) (98)

With Eq. 96, we see that these formulas coincide.
In the random fission model, we defined the fun-

damental biodiversity number in a different way: We
used the appropriate scaling of ν and JM in the limit of
JM → ∞, νrf → 0 which is in this case such that θrf =√

νrf JM is finite. In the point mutation model, we could
also have defined θpm by the appropriate scaling which
is in this case such that θpm = νpm JM Hence, for point
mutation, the scaling definition practically coincides
with the definition as the number of speciation events
per birth event, but for random fission, these definitions
are different. We chose this scaling definition because
with this definition the species abundance distribution
behaves similarly (Fig. 3).
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