15 research outputs found

    A novel methodology to predict monthly municipal water demand based on weather variables scenario

    Get PDF
    This study provides a novel methodology to predict monthly water demand based on several weather variables scenarios by using combined techniques including discrete wavelet transform, principal component analysis, and particle swarm optimisation. To our knowledge, the adopted approach is the first technique to be proposed and applied in the water demand prediction. Compared to traditional methods, the developed methodology is superior in terms of predictive accuracy and runtime. Water consumption coupled with weather variables of the Melbourne City, from 2006 to 2015, were obtained from the South East Water retail company. The results showed that using data pre-processing techniques can significantly improve the quality of data and to select the best model input scenario. Additionally, it was noticed that the particle swarm optimisation algorithm accurately predicts the constants of the suggested model. Furthermore, the results confirmed that the proposed methodology accurately estimated the monthly data of municipal water demand based on a range of statistical criteria

    Development of a hybrid PSO-ANN model for estimating glucose and xylose yields for microwave-assisted pretreatment and the enzymatic hydrolysis of lignocellulosic biomass

    Get PDF
    In this paper, two artificial intelligent systems, the artificial neural network (ANN) and particle swarm optimization (PSO), were combined to form a hybrid PSO–ANN model that was used to improve estimates of glucose and xylose yields from the microwave–acid pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on pretreatment parameters. ANN is a powerful tool capable of determining the relationship between the desired input and output data while PSO was used as a robust population-based search algorithm to optimize the performance of the ANN model. Specifically, it was used to determine the optimum number of neurons in the hidden layer and the best value of the learning rate of the ANN model. The optimization method includes minimizing the fitness function mean absolute error that was found to be 0.0176. The PSO algorithm suggested an optimum number of neurons in the hidden layer as 15 and a learning rate of 0.761 these consequently used to construct the ANN model. After constructing the hybrid PSO–ANN model, the performance of the intelligent system was examined by determining the regression coefficient (R 2) for estimating the experimental values of glucose and xylose and compared to the results from a response surface methodology (RSM) model. The results of R 2 of the hybrid PSO–ANN model for glucose and xylose were 0.9939 and 0.9479, respectively, while the RSM model results for the same sugars were 0.8901 and 0.8439. This analysis reveals that the hybrid PSO–ANN model offers a higher degree of accuracy in comparison with the more commonly used RSM model

    Updated Moving Forecasting Model of Air Maximum Temperature

    Get PDF
    In the current study, a moving forecasting model is used for the purpose of forecasting maximum air temperature. A number of recordings are used for building the AR model and next, to forecasting some temperature values ahead. Then the AR model coefficients are updating due to shifting the training sample by adding new temperature values in order to involve the change in temperature time series behaviour. The current work shows a high performance all over the temperature time series, which considered in the analysis

    A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions

    Get PDF
    Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables

    Application of hybrid machine learning models and data pre-processing to predict water level of watersheds: Recent trends and future perspective

    Get PDF
    The community’s well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the circulation processes of lakes and rivers that control water mixing and bottom sediment resuspension, further affecting water quality and aquatic ecosystems. Thus, these considerations have made the water level monitoring process essential to save the environment. Machine learning hybrid models are emerging robust tools that are successfully applied for water level monitoring. Various models have been developed, and selecting the optimal model would be a lengthy procedure. A timely, detailed, and instructive overview of the models’ concepts and historical uses would be beneficial in preventing researchers from overlooking models’ potential selection and saving significant time on the problem. Thus, recent research on water level prediction using hybrid machines is reviewed in this article to present the “state of the art” on the subject and provide some suggestions on research methodologies and models. This comprehensive study classifies hybrid models into four types algorithm parameter optimisation-based hybrid models (OBH), pre-processing-based hybrid models (PBH), the components combination-based hybrid models (CBH), and hybridisation of parameter optimisation-based with preprocessing-based hybrid models (HOPH); furthermore, it explains the pre-processing of data in detail. Finally, the most popular optimisation methods and future perspectives and conclusions have been discussed

    Evaluation of the Use of Lignocellusic Biomass in Thermal Insulation for Green Building

    Get PDF
    Preserving the temperature of the indoor environment within the acceptable limits during the cold weather using a minimal amount of energy consumption is an important factor in the modern housing systems and green buildings. Therefore, this study aims to provide eco-friendly insulation material (organic material). The utlised organic material in this study was Lignocellusic Biomass (it is also known as Poaceae common reed, and Phragmites australis) and straw. The insulation efficiency of this organic matter was evaluated via testing its performance under controlled conditions. The experimental work included three types of insulation, namely organic insulation (straw and reeds), industrial insulation material (fiberglass), and bricks (without insulation). The insulation level was monitored using an infrared camera. The thermal profile was created for each insulation scenario. The results showed that the efficiency of the organic insulation was similar to the fiberglass; only a 0.84% difference was noticed between the industrial and the organic insulation materials in terms of efficiency, which proves that the Lignocellusic Biomass is a potential eco-friendly alternative for the industrial insulation materials

    A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions

    No full text
    Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables.Validerad;2022;Nivå 2;2022-07-04 (sofila)</p
    corecore