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Abstract  13 

This study provides a novel methodology to predict monthly water demand based on several 14 

weather variables scenarios by using combined techniques including discrete wavelet 15 

transform, principal component analysis, and particle swarm optimisation. To our knowledge, 16 

the adopted approach is the first technique to be proposed and applied in the water demand 17 

prediction. Compared to traditional methods, the developed methodology is superior in terms 18 

of predictive accuracy and runtime. Water consumption coupled with weather variables of the 19 

Melbourne City, from 2006 to 2015,  were obtained from the South East Water retail company. 20 

The results showed that using data pre-processing techniques can significantly improve the 21 

quality of data and to select the best model input scenario. Additionally,  it was noticed that the 22 

particle swarm optimisation algorithm accurately predicts the constants of the suggested model. 23 

Furthermore, the results confirmed that the proposed methodology accurately estimated the 24 

monthly data of municipal water demand based on a range of statistical criteria. 25 

Keywords: Australia; discrete wavelet transform; particle swarm optimization; principal 26 

component analysis; water demand 27 
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1. Introduction 28 

Forecasting studies demonstrate that by 2075  about 9 billion of the world population would 29 

face water scarcity around the world, including Australia. Melbourne City suffered from 30 

several droughts in the past, and, according to the climate models, it will face a drier climate 31 

in the future.  Thus, this region will be  subjected to increasing water stress and water security 32 

challenges (Hemati et al., 2016). Additionally, different studies demonstrated that the 33 

continuous discharge of wastewater to the surrounding environment  is intensifying the 34 

problem of water sacristy as it  pollutes the freshwater resources such as Al-Marri et al. (2020), 35 

Alnaimi et al. (2020) and Alyafei et al. (2020). Toth et al. (2018) stated that municipal water 36 

consumption is driven by complicated interactions between human and natural system factors 37 

at various spatial and temporal scales, for example, it has been found that the increase of 38 

greenhouse gases concentrations intensifies the impacts of global warming with a high level of 39 

uncertainty. However, the majority of the   literature has only considered economic and policy 40 

factors that are characterised by a known future evolution. A few numbers of the previous 41 

studies have focused on the weather factors that have an uncertain evolution. Therefore, 42 

additional models and methodologies are needed to assess the effects of climatic factors for 43 

short- and medium-term scenarios. 44 

A medium-term forecast of municipal water demand can play a vital role in the water industry. 45 

For exmaple, an accurate medium-term forecast could address the issue of uncertainty by 46 

proactively optimising the operation of water pump that enhance the quality of delivered water 47 

to the customers and minimise the power consumption (Ajbar and Ali, 2015; Zubaidi et al., 48 

2018c). In this context, various methods have been employed to forecast the future water 49 

demand, but the need to find more reliable, capable and effective water demand model to 50 

optimise the operation of the existing water system has encouraged researchers to evolve 51 

innovative techniques (Adamowski et al., 2012).  52 
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Donkor et al. (2014), De Souza Groppo et al. (2019), and Rahim et al. (2020) reviewed various 53 

techniques and models that have been used in previous studies to predict urban water demand. 54 

These studies indicated that conventional models are lacking precision when predicting water 55 

demand, which can cause substantial problems in the operation system of the water supply. 56 

Additionally, the data analytic techniques have an effective impact for improving the accuracy 57 

of water demand prediction models.  58 

Al-Sulttani et al. (2017) mentioned that utilising conventional trial-and-error procedures to 59 

calculate the constants of the prediction models is difficult and complex. Therefore, employing 60 

an optimisation technique is a considerably more effective method to tackle nonlinear 61 

problems. Recently, particle swarm optimisation (PSO) has been recognised as an innovative 62 

technique that  could be successfully used to determine the coefficients of the prediction models 63 

in different fields, including, but not limited to, structural engineering (Hanoon et al., 2016),  64 

environmental engineering (Al-Sulttani et al., 2017), and electronic engineering (Jawad et al., 65 

2020). 66 

Araghinejad (2014) stated that hybrid techniques are being evolved to meet the new 67 

requirements of water prediction that resulted from the variability of weather factors, socio-68 

economic factors, and policy of local authority. The hybrid technique means developing one 69 

model as a primary model and the rest to support (manipulating the data) and optimise the 70 

primary model. Hybrid models have been applied in different scenarios, and the results 71 

revealed their ability to simulate the water demand by capturing the trend and seasonality with 72 

reasonable accuracy based on the scale of error such as in Altunkaynak and Nigussie (2018), 73 

Seo et al. (2018) Zubaidi et al. (2018b), Zubaidi et al. (2020b) and Zubaidi et al. (2020a).  74 

Brentan et al. (2017) and Gagliardi et al. (2017) mentioned that urban water demand prediction 75 

is characterised by high levels of uncertainty resulting from the natural variability of water 76 
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consumption. Accordingly, there is an increasing interest to develop precise methodologies for 77 

water demand estimation to improve the planning, design and operation of the municipal water 78 

system, and to reduce the level of uncertainty. 79 

In light of the above, this research proposes a novel methodology that combines the particle 80 

swarm optimisation (PSO) algorithm with two data preprocessing techniques, namely  discrete 81 

wavelet transform (DWT) and principal component analysis (PCA) to improve the 82 

performance precision of medium-term water demand anticipating by defining the coefficients 83 

of the suggested model.  84 

To the best of the authors’ knowledge, this is the first time to use this novel methodology to 85 

predict medium-term urban water demand based on nine weather factors. This research study 86 

shows the ability of PSO technique to locate the best values of coefficients for the water 87 

demand model that gives the minimal error between the observed and predicted municipal 88 

water. Accordingly, the model can insight decision-maker with a scientific tool to assess the 89 

influence of global warming on water demand for a medium-term scale. 90 

2. Studied area and data set 91 

The present study used monthly data on municipal water consumption and weather factors time 92 

series for South East Water (SEW) utility. SEW is one of the retail water utility that purchases 93 

water wholesale from the Melbourne Water company in Melbourne City, Australia. SEW 94 

provides water and wastewater services to more than 1.7 million people who live in the area. 95 

The served area covers about 3640 km2  that is a home for more than 727,000 customers, and 96 

many  commercial, and industrial organisations (SEW, 2016).  97 

The collected data included the municipal water consumption (megalitre, ML), maximum 98 

temperature (Tmax) (oC), minimum temperature (Tmin) (oC), mean temperature (Tmean) (oC), 99 
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rainfall (Rain) (mm), evaporation (Eva) (mm), solar radiation (Srad) (MJ/m2), vapour pressure 100 

(VP) (hpa), maximum relative humidity (RHmax) (%), and potential evapotranspiration 101 

(FAO56) (mm) from 2006 to 2015. Table 1 provides descriptive statistics of the significant 102 

parameters.  103 

Table 1. The descriptive statistics of significant parameters  

Variable Mean Max. Min. Std. Dev. 

Water 11412 17122 9432 1467 

Tmax 21 30 13 5 

Tmin 10 16 4 3 

Tmean 15 23 9 4 

Rain 55 158 1 31 

Eva 4 8 1 2 

Srad 15 26 6 6 

VP 12 17 9 2 

RHmax 50 65 32 8 

FAO56 3 6 1 2 

Max. = maximum value, Min. = minimum value, Std. Dev.= standard deviation 

3. Methodology  104 

This section explains, in detail, the  development of the proposed novel methodology. A 105 

number of techniques have been considered during the development of the utilized 106 

methodology, including: 107 

1- DWT method was applied, with different orders and kinds of mother wavelet, to 108 

denoise water consumption and weather variables time series.  109 
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2- PCA technique was used to choose the optimum scenario of model input. 110 

3- PSO approach was employed to define the coefficients of the suggested model of water 111 

demand prediction. 112 

4- Finally, the novel methodology, for prediction of municipal water demand, was 113 

developed basing on the studied weather variables with a minimum scale of error.  114 

To simplify the application of the developed methodology, it can be divided into three 115 

subsections: data pre-processing techniques, particle swarm optimisation algorithm, and 116 

performance evaluation criteria.  117 

3.1. Data pre-processing techniques 118 

Data preprocessing techniques can be categorised into three steps: normalisation, cleaning, and 119 

selecting the best model inputs.  120 

3.1.1. Normalisation 121 

The natural logarithm function has been widely applied in regression modelling to reduce 122 

multicollinearity among predictor variables (Zubaidi et al., 2018a). Accordingly, SPSS 24 123 

statistics package was employed for normalising data of water consumption and weather 124 

variables via natural logarithm. 125 

3.1.2. Cleaning 126 

Noise and outliers may cause an undesirable influence on data analyses and consequently on 127 

the performance of the proposed model. Therefore, data cleaning is necessary to detect and 128 

remove or treat undesirable values (Tabachnick and Fidell, 2013). In this study, the box and 129 

whisker approach was used via SPSS version (24) statistics package to clean the data from 130 

outliers and this step has a substantial positive impact on the precision of the proposed 131 
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prediction model. Also, the discrete wavelet transform (DWT) was employed to denoise the 132 

time series of all variables. The DWT  method was used here because of its efficiency for 133 

denoising time series, and it is more appropriate for hydrology applications (Okkan and Ali 134 

Serbes, 2013). Additionally, the DWT method has been used in various disciplines such as the 135 

forecast of irrigation water (Zhang et al., 2019), estimation of relative humidity (Bayatvarkeshi 136 

et al., 2018), simulation of water demand (Adamowski et al., 2012), and simulation of 137 

evapotranspiration (Patil and Deka, 2015). 138 

In the present study, the wavelets were considered to denoise the time series  in order to increase 139 

the correlation coefficient between water consumption and weather variables data, which 140 

consequently enhances the predictive accuracy of the developed model. The basic of the 141 

wavelet transform is to contain scaling and shifting of a mother wavelet along with a time 142 

series. The mathematical representation of the DWT method is described in Eq. (1) (Dohan 143 

and Whitfield, 1997; Sekar and Mohanty, 2020): 144 

𝐷𝑊𝑇(𝑚, 𝑛) =
1

√2𝑚
∑ 𝑥[𝑘]Ψ[2−𝑚𝑛 − 𝑘]

𝑘
 

(1) 

where Ψ(n) is the mother wavelet, while m and k are the scaling and shifting indices, 145 

respectively. The small transformation coefficients are typically considered as noise and can 146 

be removed without affecting the time series quality. The selection of the mother wavelet type 147 

is an essential step in the application of DWT method;  thus, the performance of various types 148 

of wavelets was assessed. This study used five types of wavelets, namely Haar, Daubechies 149 

(db), Coiflets (coif), Symlets (sym) and Discrete Meyer Wavelet (dmey) to reduce the 150 

uncertainty of outcomes. These five types of wavelets were studied using MATLAB toolbox. 151 
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3.1.3. Selecting the best model inputs 152 

In this research, principal component analysis (PCA) is employed to select the best scenario of 153 

predictors (weather variables) that used to simulate municipal water demand data using SPSS 154 

version (24) statistics package. PCA converts a dataset of original predictors into a new dataset 155 

of uncorrelated derived predictors that retain as much of the original variation as possible, and 156 

these predictors are named principal components (PCs). The latter are the outcomes of linear 157 

functions of the original predictors. During the PCA procedure, variances' sums are equal for 158 

both the original and derived predictors. The first PC represents the highest value of variance 159 

in the data that can be utilised to describe the original observations (Eq.2), and then, the second-160 

highest variance represents by the second PC (Eq.3). The rest of the PCs can be gained using 161 

the same technique. In the PCA analysis, the dimensionality of the original dataset can be 162 

decreased by employing the first few PCs (Haque et al., 2018; Sarwar et al., 2019; Sonawane 163 

and Kulkarni, 2018). 164 

𝑃𝐶1 = 𝑎11 𝑥1 + 𝑎12 𝑥2 + ⋯ + 𝑎1𝑘 𝑥𝑘 = ∑ 𝑎1𝑗

𝑘

𝑗=1

 𝑥𝑗 (2) 

𝑃𝐶2 = 𝑎21 𝑥1 + 𝑎22 𝑥2 + ⋯ + 𝑎2𝑘 𝑥𝑘 = ∑ 𝑎2𝑗

𝑘

𝑗=1

 𝑥𝑗 (3) 

Where x1, x2, …, xk refer to the original predictors in the data matrix and aij refer to the 165 

eigenvectors.  166 

Recently, two different studies (Gedefaw et al., 2018) and (Haque et al., 2018) have proved 167 

that PCA technique plays a considerable role to locate the influential variables in urban water 168 

demand modelling compared to different statistical approaches.  169 
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According to Tabachnick and Fidell (2013), the needed size of the sample dataset (N)  depends 170 

on the predictors' number as shown in Eq. (4). 171 

N ≥ 50 + 8m (4) 

m = number of predictors variables. 172 

3.2. Particle swarm optimisation based modelling  173 

PSO is an optimisation technique that has been successfully applied recently in different fields 174 

to choose the optimal solution, such as wireless sensor networks (Dash et al., 2019), single 175 

server optimisation (Alharkan et al., 2020), and smart agriculture (Jawad et al., 2020).  176 

PSO is an evolutionary computation algorithm based on the natural system that is usually 177 

applied in settling optimisation problems, and it has few parameters compared with other 178 

intelligent algorithms (Banerjee and Dwivedi, 2018; Xu et al., 2018). In this study, it is applied 179 

to obtain the best coefficients of a prediction model that offers the minimum error between 180 

observed and predicted water demand as shown in Fig. 1.  181 
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START
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i   Iteration
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Evaluate the initial values of 

W0,W1,W2,W3,W4,W5,W6,W7, and 

W8 

Yes

Run 
Water demand Equation 

(Eq. 11) 

S=S+1

Update the values of 
W0 to W8 

END

 Computed the objective function 
(MAE) 

S   Swarm size
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position using PSO Eqs (5) and (6)

Determine the best values of 
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W8 

i=i+1

No

 

Fig. 1. Flowchart of the water demand equation based on the PSO algorithm. 

  In each iteration process, the velocity and position of each particle, in the swarm, is updated 182 

based on the local best (Pbest) and the global best (gbest) values. Pbest value refers to the 183 

memory of the particle about its own best position (best fitness), and gbest value is referring to 184 

the global knowledge of the optimal position, or the optimal position in their neighbourhood. 185 

The positions of the particle are changed via adding velocity and updating, this has been 186 

illustrated in Eqs. (5) and (6) (Jawad et al., 2020). The process of the PSO algorithm continues 187 

updating according to achieving an appropriate gbest or the pre-set number of iterations (kmax) 188 

is attained. The number of iterations is determined as 500 to confirm that the variances of 189 
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objective functions are still constant for the long-term. The PSO algorithm has been coded 190 

before the application of the  MATLAB software. 191 

𝑉𝑖𝑑(𝑘 + 1) = 𝜔𝑉𝑖𝑑(𝑘) + 𝑐1 𝑟1(𝑘)(𝑃𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑋𝑖𝑑) + 𝑐2 𝑟2(𝑘)(𝑔𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑋𝑖𝑑)        (5) 192 

𝑋𝑖𝑑(𝑘 + 1) = 𝑋𝑖𝑑(𝑘) + 𝑉𝑖𝑑 (𝑘 + 1)                                                                                  (6) 193 

Where Vid is the particle velocity, Xid indicates the particle position; k is the number of 194 

iterations; ω is the inertia weight; r1(k) and r2(k) are random values ranging between 0 and 1; 195 

c1 and c2 are acceleration constants  that are often equals; c1r1(k)(Pbestid − Xid ) and c2r2(k) 196 

(gbestid − Xid) representing the updating of particles. Following Jawad et al. (2020), the value 197 

of ω =0.7, c1= c2 =1.494, and swarm size range from 10 – 50. 198 

The relationship between the predicted water demand (�̂�) and the weather variables (X) (model 199 

input) can be expressed in Eq. (7). 200 

�̂� = 𝑊𝑜 + ∑ 𝑊𝑖+2(𝑖−1) × 𝑋𝑖
2𝑖

𝑛

𝑖=1

 (7) 

Where W is the unknowing coefficient. 201 

The performance criteria applied in this research are classified as absolute, relative, and 202 

dimensionless errors. These types of errors include the mean squared error (MSE), the mean 203 

absolute relative error (MARE), the coefficient of efficiency (CE) as shown in Eq. (8), (9), and 204 

(10), respectively. Also, the Bland-Altman plot, chi-square goodness-of-fit test and Augmented 205 

Dickey-Fuller test were used to assess the residual analysis. Moreover, T-test was used to 206 

examine the difference between the means of the observed and predicted water demand.  207 

𝑀𝑆𝐸 =
∑ (𝑄𝑖 − �̂�𝑖)

2𝑁
𝑖=1

𝑁
 

(8) 
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𝑀𝐴𝑅𝐸 =
1

𝑁
∑

|𝑄𝑖 − �̂�𝑖|

𝑄𝑖

𝑁

𝑖=1

 (9) 

𝐶𝐸 = 1 −
∑ (𝑄𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑖 − �̅�𝑖)2𝑛
𝑖=1

 (10) 

Where �̂�𝑖= predicted water demand, 𝑄𝑖= observed water consumption, �̅�𝑖= mean of observed 208 

water demand, N= data size. 209 

4. Results and discussion  210 

4.1. Input data analysis  211 

Time series for water consumption (dependent variable) and weather factors (independent 212 

variables) were normalised and cleaned as mentioned earlier in sections 3.1.1 and 3.1.2. Five 213 

mother wavelets (coif5, sym5, db5, dmey and Haar) were used individually for the purpose of 214 

time series denoising. Their effects on the correlation coefficient between dependent and 215 

independents data are investigated. In general, all kinds of mother wavelets improve the 216 

correlation coefficients values between water consumption and weather variables, but dmey 217 

yielded the highest R compared with the rest types of wavelets. For example, the correlation 218 

coefficient between water consumption and maximum temperature are 0.82, 0.81, 0.80, 0.80 219 

and 0.74 for dmey, db5, sym5, coif5 and Haar, respectively. The results of the correlation 220 

analysis between water consumption and weather variables for raw and denoised data can be 221 

seen in Table 2. Apparently, the data pre-processing techniques increased the quality of data 222 

for dependent and independent time series,  for example the correlation coefficient (R) between 223 

water consumption and Rhmax increase from -0.74 to -0.83. 224 

Table 2. Correlation matrix between water demand and weather variables for denoise data. 

 Weather variables 

Data Tmax Tmin Tmean Rain Eva Srad VP RHmax FAO56 

Raw 0.72 0.62 0.69 -0.43 0.75 0.65 0.5 -0.74 0.71 

Denoised 0.82 0.71 0.78 -0.6 0.83 0.72 0.57 -0.83 0.77 
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After cleaning data, PCA technique was applied to select the best scenario for model inputs. 225 

PCA, as a factor analysis technique, was performed with the eigenvalue equal to one to enhance 226 

the strength of the factors. The results reveal that the value of the Kaiser-Meyer-Olkin Measure 227 

of Sampling Adequacy (KMO) is 0.86 > 0.6 and the Barlett’s Test of Sphericity value is 0.0 < 228 

0.05, accordingly, factor analysis is suitable (Pallant, 2011). Also, the results show that two 229 

principal components (PCs) have eigenvalues more than one and explain 94.2% of the total 230 

variance. 231 

Table 3 presents the rotated component matrix that has the independent variables heavily 232 

loaded in PC1 and PC2. Pallant (2011) stated that the multicollinearity exists among 233 

independent variables based on each PC if they have correlation equal to 0.9 and above. 234 

Therefore, Tmax, Eva and RHmax from PC1 and Rain from the PC2 were selected as the best 235 

potential scenario of prediction model inputs. 236 

Table 3. Rotated Component Matrix. 

Weather variables 
Principal components  

1 2 

Tmax 0.983  

Tmin 0.974  

Tmean 0.980  

Rain  0.963 

Eva 0.88  

Srad 0.922  

VP 0.910  

RHmax -0.869 0.445 

FA 0.960  

The size of the sample required for the model was calculated by using Eq. (4), which showed 237 

that 82 (50 + 8 × 4) were needed. In this research, the number of cases is N=120 that is way 238 

more than the required size. The relationship between predicted water demand (�̂�) and the 239 

weather variables (model input) Rhmax, Tmax, Eva, and Rin can be expressed in Eq. (11). 240 

�̂� = 𝑊0 + 𝑊1 × (𝑅ℎ𝑚𝑎𝑥)𝑊2 + 𝑊3 × (𝑇𝑚𝑎𝑥)𝑊4 + 𝑊5 × (𝐸𝑣𝑎)𝑊6 + 𝑊7 × (𝑅𝑖𝑛)𝑊8       (11) 241 
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Where, W0 to W8 are the unknowing coefficients.  242 

The PSO optimisation algorithm was applied to find the best value of the coefficients in the 243 

next subsection.  244 

4.2. Analysis of the PSO technique 245 

The size of the swarm was varied to analyse the number of the particle that offered better 246 

performance for convergence and processing time. Following Jawad et al. (2020), this research 247 

applies five swarm sizes ( 10, 20, 30, 40, and 50-particle swarms) to gain the minimum 248 

objective functions (MAE). The results show that swarm 40 offers the minimum objective 249 

function (MAE=0.05563) after 380 iterations as presented in Fig. 2, which reveals that the 250 

variance of the objective function becomes constant after 380 iterations that support our 251 

selection 500 iterations. 252 

 

Fig. 2. Objective function versus iteration (PSO). 

After applying the PSO algorithm (swarm 40), as shown above in Fig. 2, the coefficients of the 253 

Eq. (11) were obtained as tabulated in Table 4. 254 
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Table 4. The coefficients of the suggested 

equation obtained by PSO technique. 

Coefficient Value 

W0 -3.4337×102 

W1 2.3664×102 

W2 -127 

W3 32.7605 

W4 -646 

W5 3.5268×102 

W6 2.1128×10-4 

W7 2.9901×102 

W8 -6.3185 

Therefore, the new values of the constants could be substituted in Eq. (11) to produce a new 255 

water prediction model, as presented in Eq. (12). 256 

𝑊𝐷 = −3.4337 × 102 + 2.3664 × 102 × (𝑅ℎ𝑚𝑎𝑥)−127 + 32.7605 × (𝑇𝑚𝑎𝑥)−646 +257 

3.5268 × 102 × (𝐸𝑣𝑎)2.1128×10−4
+ 2.9901 × 102 × (𝑅𝑖𝑛)−6.3185                                        (12) 258 

4.3. Performance evaluation  259 

The performance of the proposed methodology was evaluated using mean squared error (MSE), 260 

mean absolute relative error (MARE) and coefficient of efficiency (CE), as presented in Table 261 

5.  The latter clearly shows that the proposed methodology offers a good scale of error based 262 

on MSE and MARE criteria, and a good coefficient of efficiency (equals to 90%) according to 263 

Dawson et al. (2007). 264 

Table 5. Performance evaluation tests. 

MSE MARE CE 

0.0057 0.0055 0.9 

Also, Bland–Altman plot was considered to estimate the degree of the systematic variance, the 265 

scatter of the values, and also to check whether there was a relation between the observed and 266 

predicted error, as shown in Fig.3. What is interesting about the data in figure 3 is that 96% of 267 
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data are distributed between bounds of acceptance range; red and green bounds (𝑚𝑒𝑎𝑛 ±268 

 2 × 𝑠𝑡𝑑).   269 

 

Fig. 3. Bland-Altman plot of the relationship between observed and predicted municipal 

water. 

Furthermore, to examine the robustness of the proposed methodology, three tests were 270 

employed for residual. First, the chi-square goodness-of-fit test was used to check the 271 

normality, while the second one was the Augmented Dickey-Fuller test that was used to 272 

examine randomness. Finally, T-test was conducted to examine the difference between the 273 

means of two groups (i.e., observed and predicted water demand). The results showed that the 274 

residuals are normally distributed and random. Additionally, the outcomes of the  T-test  275 

revealed that the magnitude of P-value was more than 0.05 meaning that the null hypothesis 276 

that there was no significant difference between the observed and predicted water, i.e., time 277 

series cannot be rejected. 278 

The results disclosed that the PSO algorithm yields excellent coefficients of water demand 279 

model. The use of a combined methodology (WDT-PCA-PSO) technique leads to a good 280 

matching between the predicted and actual water demand data. 281 
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5. Conclusion  282 

This study proposed a novel methodology to estimate the monthly municipal water demand 283 

using ten-years data considering some weather variables in Melbourne City. The methodology 284 

encompasses three hybrid techniques, namely WDT, PCA and PSO. This hybridization proves 285 

its powerful ability to enhance the predictive accuracy of the developed model; it is capable to 286 

accurately predict the water demand basing on various statistical measures, such as MSE= 287 

0.0057, MARE=0.0055, CE=0.9 and a Bland–Altman plot accuracy 96%. These findings are 288 

of great importance to both policy-makers and stakeholders in planning, reviewing and 289 

comparing the availability of water resources and the increase in water demand. Further 290 

research should be conducted to examine the effects of weather factors on the prediction of 291 

water demand using different scales. 292 
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