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Abstract: Water quality has a significant influence on human health. As a result, water quality pa-
rameter modelling is one of the most challenging problems in the water sector. Therefore, the major 
factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid 
techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hy-
brid approaches have generally been seen as a potential way of improving the accuracy of water 
quality modelling and forecasting compared with individual models. Consequently, recent studies 
have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved 
oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid tech-
niques are viable and precise methods for water quality prediction. Additionally, this paper pre-
sents future research directions to help researchers predict freshwater quality variables.  

Keywords: water quality parameters; hybrid model; metaheuristic algorithms; machine learning 
 

1. Introduction 
The growing scarcity of fresh, clean water is one of the most pressing concerns con-

fronting civilization in the twenty-first century [1]. Recent research has proven climate 
change will have a significant impact on freshwater supplies due to the probable reduc-
tion in rainfall [2]. In addition to projected droughts in various river basins throughout 
the world due to climate change, several studies have shown potential water quality (WQ) 
degradation due to dilution or concentration of soluble chemicals [3]. Additionally, mul-
tiple studies have indicated that pollution has a negative impact on freshwater resources 
in general [2]. The decline in river WQ has irreversible consequences for the environment 
and human health as more than one billion people do not have access to clean potable 
water [4]. Hence, it is necessary to estimate and make predictions regarding water quality 
in an attempt to anticipate how WQ will change over time. Additionally, forecasting fu-
ture variations in WQ is very important for future aquaculture control intelligence. As a 
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result, WQ forecasting is quite useful for anticipating WQ and estimating future supply. 
Robust, reliable, and flexible models are critically needed [5].   

Conventional approaches for time series analysis, such as auto-regressive integrated 
moving average (ARIMA, abbreviations are collected in Table S1 in the Supplementary 
Materials) and multiple linear regression (MLR) models have been shown to be limited in 
terms of carefully determining WQ due to the intricacy and sophistication of the WQ time 
series. Machine learning (ML) methods such as artificial neural networks (ANN) [6–8], 
support vector machines (SVM) [9,10], deep neural networks (Deep NN) [11], and k-near-
est neighbours (KNN) [12] have also been applied to simulate WQ [13]. Artificial intelli-
gence (AI) techniques are superior to traditional models and achieve better results due to 
the ability of AI to deal with non-linear and complex properties [14,15]. Additionally, sev-
eral combined techniques have been widely employed for WQ modelling because com-
bined techniques are better than standalone models, and this is improving forecasting ac-
curacy [16]. The increasing trend in applying hybrid ML methods can be seen in recent 
years, as revealed in Figure 1. 

 
Figure 1. Studies’ number of hybrid ML models for WQ parameters prediction over the last four 
years. 

Additionally, several other review papers have introduced the applications of the 
soft computer to forecast WQ [5,15,17–21], whose keywords and crucial aspects are sum-
marised in Table 1.  

Table 1. Summaries of related review papers. 

Reference Keywords Summary 

[19] River water quality, state of the art, literature as-
sessment and evaluation, AI, hybrid model. 

A survey on river water quality modelling using AI 
models: 2000–2020 

[15] Neural networks, water quality, environment, 
BPNN, CNN, LSTM. 

A review of ANN techniques for environmental is-
sues prediction 

[17] AI, ANFIS, ANN, river, water quality. 
AI for surface water quality monitoring and assess-

ment: a systematic literature analysis 

[18] 
Pollutant, sediment load, ML tool, ANN, dis-

charge prediction 
Applications of IoT and AI in Water Quality Monitor-

ing and Prediction: A Review 

[5] 
ANNs, feed-forward, recurrent, hybrid, water 

quality prediction. 
A Review of the ANN Models for Water Quality Pre-

diction 

[20] 

Water quality criteria, climate change, Urbanisa-
tion, eutrophication, best management practices, 
critical source areas, water quality index, ML al-

gorithms, remote sensing. 

Water quality prospective in Twenty First Century: 
Status of water quality in major river basins, contem-

porary strategies and impediments: A review 
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Reference Keywords Summary 

[14] 
AI; hybrid model; Wavelet transform; river wa-

ter quality; prediction; review. 
AI -based Single and Hybrid Models for Prediction of 

Water Quality in Rivers: A Review 

The literature on WQ forecasting can be seen from a variety of perspectives. Empha-
sizing the supply side of the problem, Tiyasha, et al. [19] reviewed papers on AI applications 
for studying river WQ prediction strategies, including the ANN, kernel-based, fuzzy-based 
complementary models, and hybrid models. In addition, model architecture, input variabil-
ity, performance criteria, regional generalisation investigation, and comprehensive evalua-
tions of AI approaches have progressed in river quality research. Han and Wang [15] pub-
lished a study on how an ANN model can estimate WQ dynamics and compare with other 
approaches such as radial basis function neural network (RBFNN), long short-term memory 
(LSTM), and convolutional neural network (CNN) to find precise outcomes and explain 
their benefits. Additionally, the study focused on how many parameters of prediction and 
which country used the ANN model. Ighalo et al. [17] reviewed papers on neural networks, 
WQ parameters, location of study, and model accuracy. Mustafa et al. [18] gave an overview 
of the internet of things (IoT) in WQ monitoring. Furthermore, their study briefly explained 
an ANN model with its advantages, limitations, and its recent application. Chen et al. [5] 
focused on an ANN model and basic model architectures in WQ forecast, such as feed-for-
ward, recurrent, and hybrid structures in addition to data collection, output strategy, input 
selection, data dividing, and data pre-processing (normalisation, missing data imputation, 
data correct, data abnormal). Giri [20] presented a holistic assessment of WQ decline in key 
river basins worldwide as shown in this review. In addition, nine modern methods, includ-
ing field-scale assessment,  optimisation strategies for placement of best management prac-
tices, a social component in watershed modelling, ML algorithms to discuss WQ issues in 
complex natural devices concomitant with spatial heterogeneity, and remote sensing in 
monitoring WQ were included. The existing constraints on improving WQ are then divided 
into major and secondary barriers. Rajaee et al. [14] reviewed different kinds of single and 
combined AI approaches including ANNs, Fuzzy Logic (FL), Genetic Programming (GP), 
SVM, hybrid ANN-ARIMA, hybrid Genetic Algorithm–Neural Networks (GA-NN), hybrid 
neuro–fuzzy (NF), and wave-let-based combined techniques such as wavelet–neuro fuzzy 
(WNF), wavelet–neural networks (WANN), wavelet–support vector regression (WSVR), 
and wavelet–linear genetic programming (WLGP) models were examined for the prediction 
of WQ in rivers.  

Despite their comprehensive surveys of recent applications of AI methods to the WQ 
field, few researchers have included studies on hybrid algorithms and how they work step-
by-step, and in detail, so we focused on hybrid ML techniques and their classification power, 
including data pre-processing methods. The reason to study these hybrid models in detail 
is that they have several advantages, such as (a) enhanced predictive performance due to 
increased capacity for pattern detection and simulation, (b) reduced risk of employing a sub-
optimal technique (if used in isolation), and (c) a simplified procedure for model choice due 
to the utilisation of various components [21]. Hajirahimi and Khashei [22] classified hybrid 
models into several categories and explained the unique characteristics of the models. Based 
on this literature review, the goal of the paper is to categorise the hybrid models suggested 
for WQ modelling and forecasting into four main classes (the components combina-
tion-based hybrid models (CBH), parameter optimisation-based hybrid models (OBH), pre-
processing-based hybrid models (PBH), and hybridisation of hybrid models). 

2. Water Quality Parameters 
The nature and amount of industrial, agricultural, and other anthropogenic activity 

within a region’s catchments considerably influences surface WQ [23]. The WQ parame-
ters are categorised into three primary groups: physical, chemical, and biological. Differ-
ent WQ factors that have been modelled are reported in this paper. Physical WQ 
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parameters such as temperature (T), total dissolved solid (TDS), electrical conductivity 
(EC), salinity, and hydrogen ion concentration (pH) are often of concern as well. Dissolved 
oxygen (DO), chemical oxygen demand (COD), and biochemical oxygen demand (BOD) 
are examples of chemical sensors. Figure 2 shows various WQ factors modelled in the 
previous studies that used a hybrid model for prediction. It can be seen that most studies 
have been carried out to simulate DO and EC parameters in water. 

 
Figure 2. Number of studies employing each parameter of WQ over the years. 

3. Machine Learning (ML) 
ML has been applied for a long time and has received considerable attention over the 

last few years. It can handle a huge volume of data and permit non-linear constructions 
by utilizing complex mathematical calculations [24]. Additionally, ML are categorised as 
unsupervised and supervised learning. Supervised learning is employed to learn the pri-
mary relationship between input and output values. Unsupervised learning, in contrast, 
gives the learning algorithms no labels or known outcomes [25]. Several ML approaches 
have been promoted for modelling WQ parameters. The ML models applied include ANN 
[10,26–28], adaptive neuro-fuzzy inference system (ANFIS) [7,29,30], (SVR) [31–33], ran-
dom forest (RF) [34,35], k-nearest neighbours (KNN) [36], Naive Bayes [37], decision tree 
(DT) [38,39], and extreme gradient boosting (XGB) [40]. The advantages and disad-
vantages of the most used ML techniques are summarised in Table 2. 

Table 2. Advantages and disadvantages of the ANN, ANFIS, and SVR models. 

Model Advantage Disadvantage References 

ANN 

It can handle non-linear data series and com-
plicated hydrological processes. Increase the 
accuracy of WQ forecasting by training and 
testing data series continuously without un-
derstanding the relationship between input 

and output. 

Over parameterisation and overfitting diffi-
culties are common in ANNs, especially 

when the approaches are based on optimal 
input selection, and the model is regarded 
as a black-box model. In addition, because 

no consistent principles control proper 
ANN model development and construc-
tion, it is not easy to prioritise a suitable 

model. 

[18,41,42] 

ANFIS 

It can be used when the system input data is 
confusing and imprecise. It can manage non-

linear data series and allow the modelling 
process to have the least possible uncertainty 

level. 

When the number of fuzzy rules grows, it 
might become computationally expensive 

and may risk overfitting. 
[42–44] 
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SVR 

Its increased generalisation ability, unique 
and globally optimum structures, and ability 
to be quickly trained. And SVR’s flexibility is 

one of its strongest features, dependent on 
several types of kernel functions such as lin-

ear, polynomial, and radial basis function 
(RBF) kernels. 

Hyper-parameters like the penalty factor, 
accuracy, and kernel function variance sig-

nificantly impact the performance of the 
SVR model. 

[45,46] 

RF  
It is able to manage large datasets with sev-
eral features, and the accuracy of modelling 

improves when the number of trees increases. 

The training process is slowed when using 
the model with a high number of trees. 

[47,48] 

4. Data Pre-Processing Techniques 
Data pre-processing techniques are considered essential to the data mining process [49]. 

Data preparation is vital to ensuring that all predictors receive equal attention during the 
learning phase and helps speed up the procedure [50,51]. These methods play an essential role 
in models by fostering high accuracy and minimal computational costs at the learning phase, 
as noisy and unreliable information that could exist in data records will adversely impact the 
training stage and outcome in a poor model [49]. The pre-processing data method consists of 
three approaches: normalisation, cleaning, and model input determination, as in Zubaidi et al. 
[52]. Previous studies used one or two pre-processing steps (Table S2 in the Supplementary 
Materials). In this study, only 48% of the researchers employed data normalisation, 53% uti-
lised data cleaning, and 67% used best model selection.  

1. Data Normalisation 
The goal of data normalisation is to have the same range of values for each of the 

ANN model’s inputs and to obtain the time series normally or nearly normally distrib-
uted, as this will aid in the stable convergence of the weights and biases and limit the 
impact of noise [2]. 

2. Data Cleaning 
The cleaning strategy aims to determine and eliminate noise from raw data to reduce 

the error scale and improve the regression coefficient [2]. Data cleaning is required to dis-
cover and treat unwanted values, because the noise and outliers negatively impact data 
analysis and then the suggested model’s performance [51,53].  

3. Selecting appropriate descriptors 
One of the most critical steps in data pre-processing is selecting the best model input 

[2]. The selection of explanatory factors influencing WQ metrics as model input data is vital 
in creating any successful model [54].  

5. Hybrid Models 
A hybrid model combines two or more methods, one serving as the primary model 

and the others as pre- or post-processing approaches [2]. In recent years, combined models 
have arisen as a way to construct flexible and efficient models and improve the forecasting 
accuracy of individual algorithms [5,55]. The hybrid models can be classified into four 
types, namely: the components combination-based hybrid models (CBH), parameter op-
timisation-based hybrid models (OBH), pre-processing-based hybrid models (PBH), and 
hybridisation of hybrid models as in Hajirahimi and Khashei [22]. There are different 
studies in the hybrid models shown in Figure 3. 
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Figure 3. Hierarchy chart to a taxonomy of reviewed hybrid models. 

5.1. Components Combination Based Hybrid Models (CBH) 
In this section, ML models were combined to correct the relative incompetency of the 

individual models. The CBH models aim to improve prediction performance by enabling 
the remarkable capacity of individual prediction models regardless of combination 

Hybrid Model

CBH

ARIMA-
ANN

CNN-LSTM

DRCNN-
BiGRU

LSTM-RNN

OBH

MLP-FFA

NN-MOGA

PSO-ANFIS

IGA-BPNN

ANN-CS

SVR-AIG

SAE-LSTM

IABC-BP

XGBoost-
XGBoost

MARS-
XGBoost

Boruta-
XGBoost

IGRA-LSTM

LSSVM-GBO

PSO-GEP

MIC-SVR

AR-M5P

PBH

MIC-SVR

W-SVR

PCA-QRF

PCA-MLR

CEEMDAN-
RF

CEEMDAN-
XGBOOST

SE-LSTM

KPCA-RNN

MODWT-
MARS

W-LWLR

W-GEP

W-ANFIS

FW-NN

W-GP

W-MLE

Hybridisation with 
hybrid model

PSO-DBN-
LSSVR

WA-PSO-
SVR

EEMD-DL-
LSTM

CEEMDAN-
CNN-LSTM

W-LSSVM-
ISA

SWT-ISSA-
LSTM

PSO-GA-
BPNN

VMD-SSA-
LSSVM

VMD-
CEEMDAN-

ELM
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structures [22]. For example, Lola et al. [56] developed a combined technique to forecast 
daily WQ data (DO, water T, pH, and salinity) using ARIMA and ANN. When compared 
to stand-alone ARIMA and ANN, the results of the experiments demonstrate that the sug-
gested model can be a viable and effective strategy to increase prediction precision with 
high correlation coefficients and decrease the error percentage for all indicators up to the 
maximum of 87.87% in both mean absolute error (MAE) and root mean square error 
(RMSE). 

Barzegar et al. [57] investigated the predictive capability of two single deep learning 
(DL) models, the LSTM and CNN models, along with their combined CNN_LSTM 
technique to forecast short-term WQ. Two conventional ML methods, (SVR) and (DT), 
were also used, and their results were compared with DL models. Various statistical 
criteria were considered to assess the models. The results show that both DL models have 
similar performance for predicting Chlorophyll-a (Chl_a), and LSTM is better than CNN 
for simulating DO. Generally, the combined technique CNN_LSTM was superior to 
LSTM, CNN, SVR, and DT models, and it was able to simulate the high and low levels of 
WQ parameters, especially for the DO concentration. Similarly, Baek et al. [58] also 
suggested a composite model LSTM with the DL model to forecast the water level (WL) 
and quality parameters (Total phosphorus TP, total nitrogen TN, total organic carbon 
TOC). The outcomes showed that the hybrid model’s performance was more precise 
according to the Nash–Sutcliffe efficiency (NSE). 

Yan et al. [59] suggested using the one-dimensional residual convolutional neural 
networks (1-DRCNN) and bi-directional gated recurrent units (BiGRU), GRU, LSTM, and 
combined 1_DRCNN with BiGRU models, to forecast TN, TP, and potassium permanga-
nate index (CODMn). The outcomes demonstrate that the combined technique has greater 
forecasting precision and generalisation to predict WQ than standalone models (LSTM, 
GRU, and BiGRU) based on statistical metrics, such as MAPE and the determination co-
efficient (R2). 

Hien Than et al. [60] investigated the LSTM-MA model to forecast DO, PH, COD, 
BOD, TSS, Tur, ammonia nitrogen oxidation-reduction potential (NH3-NL), and Coliform 
variables and classified WQ. The LSTM-MA combined approach was employed to classify 
WQ, and this model is dependable and effective. The results revealed that the LSTM-MA 
was superior to the ARIMA, NAR, NAR-MA, and LSTM models according to the RMSE. 
According to these reviews, combined approaches can be customised by coupling two ML 
models together to suit the researchers’ needs.  

5.2. Parameter Optimisation-Based Hybrid Models (OBH) 
Metaheuristics are commonly employed in WQ forecasting models to modify the pa-

rameters of other approaches, estimate the coefficients of a function, or train an intelligent 
agent and are a method for finding a good (near-optimal) answer at a reasonable compu-
tational cost [61]. 

Numerous approaches and algorithms have been developed to allow AI modelers to 
employ the computing system in hydrology, predicting and optimizing storage systems. 
The tasks are becoming more complex as the management of water resources improves to 
a broader scope, with the need to deal with the whims of climate change and more. Aside 
from AI models, other areas of research include optimisation algorithms and so-called 
evolutionary computing approaches, which can be utilised as a single algorithm for fore-
casting or combined with traditional methods to create a hybrid model. 

5.2.1. Particle Swarm Optimisation (PSO) 
This is a tool for computationally iterative search and optimisation [49]. It is scientif-

ically inspired by social behaviour in animal societies, such as flocking birds or schools of 
fish. This technique utilises a swarm of particles, each of which represents a potential so-
lution [47]. The PSO is evolved depending on two significant aspects of bird flocks’ move-
ment behaviour: their velocity and position [62]. It is applied to obtain the best forecast 
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technique coefficients that offer the lowest error between measured and forecasted values. 
So, it has been effectively used recently in various fields to select the optimal solution, 
such as in intelligent agriculture [63], WL [64], streamflow [62,65], drought [66], and WQ 
[67,68]. 

Aghel et al. [67] adopted two AI methods, ANFIS and ANFIS-PSO. The results 
showed that using two models to forecast inorganic markers of WQ is extremely effective. 
The flexibility of the PSO-ANFIS approach in modelling, on the other hand, is superior to 
the standalone ANFIS approach based on performance criteria (i.e., MRE%, MAE, RMSE, 
R and t statistics). 

Azad et al. [68] applied the ANFIS model in conjunction with PSO and ant colony 
optimisation for continuous domains (ACOR) in predicting WQ parameters. The ANFIS 
approach, which uses least squares and gradient descent as training algorithms, was 
applied and compared with ANFIS_PSO and ANFIS-ACOR. The research revealed that 
ANFIS-PSO was the best model to forecast EC, TDS, TH, sodium adsorption ratio SAR, 
and carbonate hardness CH parameters. However, PSO may be a suitable strategy for 
optimizing and learning the aforementioned technique. 

Shah et al. [69] proposed the hybrid feed forward neural network (PSO-FFNN) and 
combined gene expression programming (PSO-GEP) to forecast DO and TDS levels. The 
more essential input factors for TDS and DO forecasting were determined using principal 
component analysis (PCA). The fallouts show that the PSO-GEP model outperforms the 
PSO-FFNN model in terms of precision with statistical metrics.  

5.2.2. Genetic Algorithm (GA) 
This is a robust, powerful, optimised method based on natural selection and evolu-

tionary principles [28]. GA was inspired by natural processes of biological evolution and 
has been widely employed to generate high-quality solutions to optimisation issues [70]. 
In the early twentieth century, genetic algorithms found their way into the field of hydrol-
ogy [47]. The GA algorithm is applied in several areas, such as water flow [71,72] and WQ 
[73,74]. 

Stajkowski et al. [74] utilised the GA-LSTM technique to forecast the river water tem-
perature (WT), and an RNN model as a benchmark to check the robustness of the sug-
gested technique. The goal of using GA is to improve the ANN design process. The results 
showed that the GA-LSTM model outperformed the RNN, and the fundamental issue of 
identifying the ideal time frame and number of memory cell units was overcome. Accord-
ing to the findings, the GA-LSTM can be applied as an advanced DL approach for time 
series analysis. 

Azad et al. [73] implemented GA, ACOR, and differential evolution (DE) to improve 
the performance of an ANFIS. The most appropriate inputs for each model were first de-
termined utilizing sensitivity analysis, and then all of the quality characteristics were fore-
casted using the aforementioned models. The most acceptable models for simulating EC 
and TH were ANFIS-DE, but both the ANFIS-DE and ANFIS-GA techniques showed im-
proved performance compared to ANFIS in forecasting river WQ parameters. 

Jin et al. [75] investigated a hybrid approach known as an improved genetic algo-
rithm (IGA) back-propagation neural network (BPNN) to forecast variations in surface 
WQ for real-time early warning for NH3-N, TURB, and EC parameters. IGA optimises the 
reasonable initial weight parameters and prevents the evolved method from choosing an 
optimal local outcome. BPNN is used to adjust suitable connection structures and find the 
features of WQ variation. The findings revealed that the created AI technique could sig-
nificantly increase forecasting accuracy and dependability and provide effective real-time 
early warnings for emergency response. The proposed model outperformed BPNN ac-
cording to statistical criteria. 
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5.2.3. Other Optimisation Algorithms 
The firefly algorithm (FFA) proposed by Yang [76] in 2010 is a heuristic optimisation 

algorithm that is biologically inspired, and it depends on a specific behavioural pattern, 
especially the fireflies’ light flashing characteristic [77]. 

Raheli et al. [78] evaluated the ability of a newly suggested combined prediction tech-
nique that depends on the FFA as a heuristic optimiser, coupled with the MLP. The model 
was applied to forecast monthly WQ (i.e., BOD, DO, COD, K, EC, PH, PO4, Cl, Na, and 
NH4N). Considering the performance criteria outcomes, the MLP-FFA technique outper-
forms the corresponding MLP model. 

The cuckoo search (CS) was proposed by Yang and Deb. It is effective in tackling 
global optimisation issues [79]. Chatterje, et al. [80] used CS to increase support in the 
classification technique to predict WQ. To identify the best weight vector for the ANN 
model, the suggested approach (NN-CS) gradually diminishes an objective function 
(RMSE). The suggested technique was compared to other well-established approaches, 
such as NN-GA and NN-PSO, concerning the precision, Matthews correlation coefficient 
(MCC), recall, Fowlkes–Mallows index (FM index), and f-measure. The simulation out-
comes showed that NN-CS outperformed the other models. 

Li et al. [81] applied a combined approach that depends on LSTM and sparse auto-
encoder (SAE) to enhance the forecasting precision of DO in aquaculture. SAE pre-trained 
the hidden layer data containing deep latent WQ aspects and then fed it into the LSTM to 
improve forecast precision. The outcomes showed that SAE-LSTM outperforms LSTM 
and SAE-BPNN. 

The artificial bee colony (ABC) was proposed by Karaboga [82]. It has ushered in a 
new technique of thinking about optimisation algorithms. It was inspired by the study of 
the life cycle of bees and included two core concepts: self-organisation and division of 
labour [82]. The ABC optimisation approach has not been employed broadly in hydrology 
issues. However, there have been limited attempts to adopt it in optimizing WQ variables, 
such as Chen et al. [83], which used an improved artificial bee colony (IABC) algorithm 
with BPNN to predict DO, BOD, and CODM parameters. The IABC algorithm optimised 
the connection weight values between network layers and the threshold of each layer us-
ing a BP neural network. When compared to the regular BP, ABC-BP, and PSO-BP neural 
network models, it was revealed that the IABC-BP neural network has better prediction 
capability and could reach considerably higher accuracy—about 25% higher than the BP 
neural network. The new technique is beneficial for predicting WQ in a water diversion 
project and might be quickly used in this area. 

Grey Relational Analysis (GRA) is a subdivision of the grey system method that deals 
with ambiguous or uncertain problems and circumstances involving discrete data and 
inadequate knowledge [84]. Zhou et al. [85] proposed three models (LSTM, BPNN, and 
ARIMA) to forecast DO concentrations. Additionally, the improved grey relational anal-
ysis (IGRA) method was used for the feature selection of WQ information. The result re-
vealed that LSTM outperformed the other models, and the hybrid IGRA-LSTM technique 
was the best. 

Melesse et al. [4] proposed ten approaches: M5 prime M5P, bagging-M5P, AR-RF, 
random subspace (RS)-M5P, RF, RC-RF, random committee (RC)-M5P, bagging-RF, RS-
RF, and additive regression (AR)-M5P to forecast salinity. The results revealed that the 
AR-M5P exceeded other models according to performance criteria. The combination of 
ML algorithms enhanced model performance in terms of capturing extreme salinity 
values, which is critical in managing water resources. 

Tiyasha et al. [28] suggested four tree-based predictive models: RF, random forest 
geneRator (Ranger), conditional random forests (cForest), and XGBoost compared with 
algorithms, XGBoost, multivariate adaptive regression splines (MARS), and Boruta, GA. 
Additionally, four feature selector techniques (GA, Boruta, XGBoost, and MARS) were 
used to determine the optimum independent variables employed to forecast DO changes. 
The outcomes show that the performance of all predictive approaches was good as per 
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the features selected by the algorithms MARS and XGBoost. Additionally, the XGBoost 
predictive technique recorded the best performance when combined with MARS and 
XGBoost algorithms in terms of applied various statistical criteria. 

Kadkhodazadeh and Farzin [86] explored a novel gradient-based optimiser (GBO) 
algorithm coupled with a least square support vector machine (LSSVM) technique for the 
evaluation of WQ parameters. The LSSVM-GBO method’s performance is examined using 
three benchmark datasets to demonstrate its superiority (Housing, LVST, Servo). The 
novel hybrid algorithm’s findings were then compared to ANN, ANFIS, and LSSVM tech-
niques. The modelling results based on evaluation criteria revealed that LSSVM-GBO out-
performed all other benchmark datasets and techniques. Then, EC and TDS modelling 
was done at varying time delays using the best input combination and the best algorithm. 
The Gotvand station has the highest modelling accuracy for EC and TDS parameters. 

Dehghan, et al. [87] used SVR in stand-alone and hybrid versions. SVR was 
integrated with four metaheuristic algorithms, such as chicken swarm optimisation 
(CSO), social skidriver (SSD) optimisation, black widow optimisation (BWO), and the 
algorithm of the innovative gunner (AIG) to predict sufficient monthly DO. All the hybrid 
models produced good performance based on the different statistical criteria, and SVR–
AIG offered better results. Moreover, combined techniques improved the precision of the 
stand-alone SVR method by 6.52–1.75%. 

5.3. Preprocessing-Based Hybrid Models (PBH) 
In this method, the input data are pre-processed using various methods such as de-

composition-based, filter-based, denoising-based, feature selection, and data cleaning ap-
proaches. Following this, the appropriate individual model forecasts the screened time 
series [88].  

Solg, et al. [89] investigated two models: SVR and ANFIS. The wavelet transform 
approach was used to clean raw data from noise and analyse the data set into sub-series. 
Additionally, principal component analysis (PCA) is applied to determine the best pre-
dictors. The outcomes showed that the SVR was better than the ANFIS model, the wavelet 
transform approach improved data quality, and the hybrid W-PCA-SVR is the best tech-
nique.  

Zhang et al. [23] designed Kernal PCA (kPCA) with a recurrent neural network 
(RNN) model to estimate the trend of DO. The kPCA technique is used to reconstruct WQ 
variables, which tries to minimise the noise in raw sensory data while preserving 
actionable information. The model can use previous knowledge to forecast future trends 
because of the RNN’s recurrent connections. When compared to present AI techniques 
such as FFNN, SVR, and the general regression neural network model (GRNN), the 
kPCA-RNN model attained the predicted accuracy and outperformed the comparative 
models. 

Al-Sulttani et al. [90] proposed five various hybrid ML techniques, including 
Gradient Boosting Machines (GBM H2O), RF, Quantile regression forest (QRF), radial 
SVM, and Stochastic Gradient Boosting (GBM). Furthermore, the techniques were 
integrated by employing two various algorithms for identifying features, e.g., GA and 
PCA, to predict monthly BOD values. GA was used to select the best-fitting predictions 
based on their evolutionary potential. The findings show that the combined PCA-QRF 
approach was the best performing approach to predict WQ compared to the other models. 

Bi et al. [91] suggest ANN, SVR, ARIMA, XBoost, and LSTM models to forecast DO 
and CODmn. The outcomes reveal that the SE-LSTM technique is superior to the other 
methods based on statistical metrics. Hence, The Savitzky–Golay filter can remove 
possible noise from the WQ time series, and the LSTM can examine non-linear properties 
in a complex water environment. 

Ahmed et al. [92] created a hybrid model by combining the MARS model with the 
maximum overlap discrete wavelet transformation (MODWT) (i.e., MODWT-MARS). The 
suggested model was also compared against various ML techniques (MARS, CEEMDAN-
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MARS, CEEMDAN-SVR, SVR, KRR, KNN, RF) to estimate daily WQ parameters. The 
results revelated that the combined algorithm (i.e., MODWT-MARS) was superior to the 
other methods according to statistical criteria. This hybrid approach could be used to 
anticipate WQ characteristics using fewer predictor factors in the future. 

Ahmadianfa, et al. [93] proposed a novel hybrid model discrete wavelet transform 
coupled with locally weighted linear regression (LWLR) and employing the mother 
wavelet Bior 6.8 to analyse data into two levels. The outcomes reveal that the W-LWLR 
technique outperforms other methods such as LWLR, MLR, SVR, ARIMA, W-MLR, W-
ARIMA, and W-SVR. 

Eze et al. [94] developed a new combined forecast approach that depends on hybrid 
empirical mode decomposition (EEMD) and an LSTM neural network. Initially, the 
integrity of the datasets is improved by using moving average filtering and linear 
interpolation techniques to pre-treat the WQ indicator datasets in this combined EEMD-
DL-LSTM technique. Then, the EEMD technique decomposes the dataset of measured real 
sensor WQ characteristics. Finally, a multi-feature selection procedure is used to carefully 
choose a collection of IMFs that are substantially linked with the measured real-world WQ 
parameter datasets and integrate them as inputs to the DL-LSTM neural network. The 
innovative hybrid prediction model’s performance is validated by comparing the results 
to real datasets. Various measurement criteria, such as (MAE, MAPE, RMSE, and MSE), 
were utilised to assess the overall precision of the unique hybrid prediction technique. 

5.4. Hybridisation of Hybrid Models 
The hybridisation of hybrid models is a novel idea proposed to improve forecasting 

precision over traditional hybrid classes [22]. 
In 2020, several researchers used a combined hybrid model with a pre-processing 

algorithm, such as Ya, et al. [95], who suggested a technique for forecasting WQ parame-
ters (TN) that depends on the deep belief network (DBN) method. The deep belief net-
work’s network is optimised using the PSO algorithm, which extracts feature vectors from 
WQ data at several scales. The PSO-DBN WQ prediction model is then integrated with 
the least squares support vector regression (LSSVR) machine, which is used as the top 
forecast layer of the approach. When comparing the proposed model (PSO-DBN-LSSVR) 
to the classic back propagation (BP) neural network, the DBN neural network, LSSVR, and 
the DBN-LSSVR hybrid technique, the outcomes display that the model can accurately 
forecast the WQ parameters and has good robustness based on statistical metrics. 

Wang et al. [96] established a combined assembly wavlet analysis (WA-PSO-SVR) to 
simulate three WQ metrics: KMnO4(CODMn), (NH3-N), and (DO). The results showed that 
the combined WA-PSOSVR technique outperformed two other methods (PSO-SVR and a 
single SVR) in predicting non-linear stationary and non-stationary time series, 
particularly for extreme value prediction. Daily forecasts were more precise than monthly 
forecasts, indicating that the combined technique was better suited to short-term 
forecasting in this case. 

In 2021, Son, et al. [97] suggested a novel hybrid technique (SWT-ISSALSTM). An 
improved LSTM model was presented to overcome the gradient disappearance or explo-
sion in standard RNNs, as well as the inability to handle the issue of long-time depend-
ence and enhance the model’s performance. Additionally, a hybrid model using syn-
chrosqueezed wavelet transform (SWT) to clean the raw data was used to resolve the non-
stationarity, unpredictability, and nonlinearity of the WQ parameters data. The improved 
sparrow search algorithm (ISSA), a novel heuristic optimisation technique integrating 
Cauchy mutation and opposition-based learning (OBL), was also used to obtain the opti-
mum hyperparameter values for the LSTM method. The suggested combined system was 
assessed utilising weekly WQ parameters. The results show that the addressed model, 
which combines the SWT’s strong noise-resistant resilience and the LSTM’s non-linear 
mapping, outperforms the peer models (stand-alone LSTM, BPNN, SVR, SWT-LSTM, and 
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ISSA-LSTM) at two gauging stations. The suggested combined technique (SWT-ISSA-
LSTM) can be utilised as a replacement framework for predicting WQ. 

Jamei et al. [98] aimed to find two novel wavelet-complementary intelligence meth-
odologies: the wavelet least square support vector machine coupled with improved sim-
ulated annealing (W-LSSVM-ISA) and the wavelet extended Kalman filter integrated with 
an artificial neural network (W-EKF- ANN), to predict monthly Mg and SO4 metrics. The 
findings showed that both novel complementary paradigms could provide acceptable ac-
curacy for WQP prediction based on correlation coefficient R and RMSE. 

Sha et al. [99] evaluated various DL approaches such as CNN, LSTM, and CNN-
LSTM models. Moreover, they employed a complete ensemble empirical mode 
decomposition algorithm (EEMD) with adaptive noise (CEEMDAN) to decompose and 
reduce the intricacy of DO and TN concentration. The outcomes reveal that the CNN–
LSTM performed better than the stand-alone CNN and LSTM models, the techniques 
using CEEMDAN-based input data performed significantly better than the techniques 
using original input data, and the technique precision incrementally reduced with the rise 
of forecasting stages, while the original input data decayed more rapidly than the 
CEEMDAN-based input data, indicating that the input data pre-processed by the 
CEEMDAN method could significantly enhance. 

Yan et al. [100] suggested four stand-alone models (GA-BPNN), (PSO-BPNN), (PSO-
GA-BPNN), and (BPNN) to forecast DO concentration. The finding indicated that the 
PSO-GA-BPNN technique had enhanced forecasting precision and robustness compared 
with other methods. The connection weight and threshold of BPNN were optimised using 
PSO and GA in this work. This hybrid PSO and GA algorithm are based on the PSO algo-
rithm, with the GA inserted during the PSO method’s execution. It combines the benefits 
of both algorithms, resulting in less processing, faster convergence, and better global con-
vergence performance. 

The details of the selected papers, including authors, and the location, time scale, 
methods, input variables, output prediction, and evaluation criteria, are given in Table 3. 

An analysis of several reviewed articles on optimisation algorithms revealed the fol-
lowing: 

• The general optimisation approaches demonstrated their ability to tune all AI models 
to achieve a far higher score on various evaluations as compared to a single model, 
which does not use any optimisation technique. In addition, when compared to a trial-
and-error procedure, the probability of achieving ideal values is substantially higher.  

• The most commonly employed algorithm in the WQ area and paired with AI ap-
proaches to forming a combined model is the PSO algorithm. 

• Several studies used pre-processing algorithms to overcome the data’s non-station-
arity, randomness, and nonlinearity of the WQ indicators. However, all pre-processing 
data steps were not used in most papers. 

• The trend of using hybrid models has increased in recent years.



Environments 2022, 9, 85 13 of 24 
 

 

Table 3. Summary of application of different type hybrid models in WQ monitoring. 

Authors  River Location Scale Predictors  Target Models Used Best Model Measures of Accuracy 

[4] Babol-Rood River Northern iran  Monthly  
PH, HCO3, CL, SO4, 
Na, Mg, Ca, Q, TDS,  

EC 

M5P, RF, bagging-M5P, 
bagging-RF, RS-M5P, RS-
RF, RC-M5P, RC-RF, AR-
M5P, AR-RF 

AR-M5P RMSE, MAE, NSE, BPIAS 

[59] Luan Tangshan City Every 4 h  
T, PH, DO, BOD, Tur,
COD-Mn, NH4-N, TP,
TN 

TP, TN, COD-Mn  
1-DRCNN, 
BiGRU, GRU, LSTM  

Combined  
(1-DRCNN-BiGRU) 

MAE, MAPE, RMSE, R2  

[31] Pearl  China 
Used six dif-
ferent time
scale  

PH, EC, Tur, DO, NH3-
N, TP, COD-Mn, TN,
WL, WT 

DO SVR MIC-SVR NSE, R2, RMSE 

[69] Indus river  Asia monthly 
Ca, Mg, Na, Cl, SO4, 
HCO3, PH, EC, WT,
DO, TDS 

DO, TDS PSO-FFNN, PSO-GEP PSO-GEP NSE, RMSE, RRMSE, P, R  

[60] Dong Nai River Vietnam Month  
DO, PH, COD, BOD,
TSS, Tur, NH3-NL, Col-
iform 

DO, PH, COD, BOD,
TSS, Tur, NH3-NL, 
Coliform 

ARIMA, NAR, NAR-MA, 
LSTM, and LSTM-MA 

LSTM-MA MSE, RMSE, MAPE 

[86] Karun Iran Monthly  
Ca, Cl, Mg, Na, SO4,
SAR, Sum.C, Sum.A,
PH, Q, HCO3 

TDS, EC 
ANN, ANFIS,  
LSSVM, LSSVM-GBO 

LSSVM-GBO MAE, RRMSE, R, R2 

[57] 
Greece’s Small 
Prespa Lake 

 south-eastern Eu-
rope 

Every 15-
min  

PH, ORP, T, EC, DO,
Chl-a 

DO, Chl-a  
LSTM, CNN, SVR,  
and DT, CNN-LSTM 

CNN-LSTM 

R, RMSE, MAE, PBIAS, 
NSE, WI, and graphical 
plots (Taylor diagram, box 
plot and spider diagram) 

[58] Nakdong South Korea Monthly  WL, TOC, TP, TN  TOC, TP, TN  CNN-LSTM CNN-LSTM NSE, R2, MSE 

[97] 

Yongding River and 
Gangnan gauging 
stations in the Haihe 
River Basin, 

Chain  weekly DO DO 

SWT-LSTM,  
ISSA-LSTM,  
SWT-SSA-LSTM,  
SVR, BPNN,  
and single LSTM 

SWT-ISSA-LSTM 
AEmax, MAE, MAPE, 
RMSE, R2, CC, NSE, IA, 
1.96 Se 

[98] Maroon  Southwest Iran monthly Q, EC, Mg, SO4 Mg, SO4 
LSSVM-ISA, EKF-ANN 
W-LSSVM-ISA, W-EKF-
ANN 

W-LSSVM-ISA R, RMSE, KGE 
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[90] the Euphrates River Iraq monthly 
T, PH, EC, TSS, BOD,
ALK, Ca, COD, SO4

TDS, TSS, Tur 
BOD  

(QRF), (RF), (SVM), 
(GBM) (GBM_H2O) 
 

PCA-QRF 
R2, RMSE, AE, NSE, W in-
dex, PBIAS 

[99] Xin’anjiang River Huangshan City, 4-h DO, TN  DO, TN  
CNN, LSTM, CNN-
LSTM, CEEMDAN-CNN-
LSTM 

 CEEMDAN-CNN-
LSTM 

CE, RMSE, MAPE 

[100] Beihai Lake Beijing Hourly  
PH, CAHL-A, NH4H, 
BOD, EC 

DO 
BPNN, PSO-BPNN, GA-
BPNN, PSO-GA-BPNN 

PSO-GA-BPNN APEmax, MAPE, RMSE, R2 

[85] 
Tai Lake, Victoria 
Bay 

China. 

Monthly in
Tai lake,  
every two
weeks in
Victoria Bay 

Tai lake (TN, TP, NH3-
N, SS, WT, DO, PH,
Transparency, CL, Pre-
cipitation  
Victoria Bay (E.coli,
BOD5, NH3-N, Nitrite,
phosphate, PH, WT, sa-
linity 

DO  LSTM, BP, ARIMA  IGRA -LSTM RMSE,  

[38] Tualatin Oregon, USA Hourly 

T, DO, PH,  
Specific conductance,
Tur, fluorescent  
dissolved organic mat-
ter  

T, DO, PH,  
Specific conduct-
ance, Tur, fluores-
cent dissolved or-
ganic matter  

RF, XGboost, 
CEEMDAN-RF, 
CEEMDAN-XGBoost, 
PSO-SVM, RBFNN, 
LSSVM and LSTM 

CEEMDAN-RF, 
CEEMDAN-XGBoost 

MAPE, MAE, RMSE, 
RMSPE, U1, U2  

[28] Klang  Malaysia 
Monthly 
daily  

15 WQ parameters, 7
hydrological compo-
nents  

DO 

XGBoost- XGBoost 
MARS-XGBoost 
Boruta- XGBoost 
GA- XGBoost 
Boruta-Ranger 
GA-Ranger 
MARS-Ranger 
XGBoost-Ranger 
…… 

XGBoost- XGBoost 
MARS-XGBoost 
Boruta- XGBoost 

R2, RMSE, MAE, NSE, MD 

[91] GuBeiKou, Beijing, China. 
Every 4-
hour 

DO, CODmn DO, CODmn 
ANN, SVR, ARIMA, 
XBoost, LSTM, SE-LSTM 

SE-LSTM  MAE, MAPE, RMSE 

[83] Yangtze river  China Daily  
DO, BOD, CODmn, T,
PH, NH3-N 

DO, BOD, CODmn 
BP, ABC-BP, PSO-BP, 
IABC-BP 

IABC-BP R2, NSE, RE,  
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[81] Shrimp pond  China Every 10 min
DO, WT, Am, PH, AT, 
Hu, AP, WS 

DO 
SAE-LSTM, SAE-BPNN, 
LSTM, BPNN  

SAE-LSTM  MSE, RMSE, MAPE 

[23] Burnett river  Australia Hourly  T, EC, DO, PH, Chl-a DO 
KPCA-RNN, FFNN, SVR, 
GRNN  

KPCA-RNN MAE, R2, RMSE 

[94] Abalone farm  South African  Monthly  DO, T, Tur, PH DO, T, Tur, PH 
BP, SAE-BP, DL-LSTM, 
SAE-LSTM, EEMD-DL-
LSTM 

EEMD-DL-LSTM RMSE, MAE, MSE, MAPE 

[96] Grand Canal China 
Daily and
Monthly 

CODMn, NH3-N, DO COD 
SVR, PSO-SVR, WA-PSO-
SVR 

WA-PSO-SVR RMSE, NSE, MAPE, R2 

[68] 
Zayandehrood 
River 

Iran (2001-2015) 
TDS, EC, pH, HCO3, Cl, 
SO4, Mg, Na, K, CO2, 
Ca, CH, and TH 

 EC, TDS, SAR, CH,
and TH 

ANFIS, ANFIS-PSO, AN-
FIS-ACOR 

ANFIS-PSO MAPE, RMSE, R2, d 

[87] Cumberland River 
Southern United 
States 

Monthly  T, Q DO 
SVR, SVR- CSO, SVR- 
SSD, SVR- BWO, SVR- 
AIG 

SVR–AIG RMSE, R2, MAE, NSE, BIAS 

[80] Hooghly River West Bengal, India Monthly 
H, Cl, TH, total alkalin-
ity, Turbidity and Re-
sidual Chlorine 

H, Cl, TH, TALK, Tur
and Residual Chlo-
rine 

NN-CS, NN-GA, NN-
PSO 

NN-CS 
RMSE, accuracy, precision, 
recall, f-measure, (MCC) 
(FM index) 

[67] 
Kermanshah Prov-
ince 

Iran Monthly pH, T, SC, SA  TAlk, TH, TDS, EC ANFIS, PSO-ANFIS PSO-ANFIS MRE, RMSE, R 

[95] Juhe River China Every 4 h  
T, pH, DO, conductiv-
ity, NTU, CODmn, TP,
NH4N 

TN 
BPNN, LSSVR, DBN, 
DBN-LSSVR, PSO-DBN-
LSSVR 

PSO-DBN-LSSVR R2, RMSE, MAE, MAPE 

[78] Langat Rive Malaysia Monthly 
COD, PO4, TS, K, Na, 
Cl, EC, PH, NH4-N BOD, DO MLP, MLP-FFA MLP-FFA RMSE, R, WI 

[92] Surma River Bangladesh 
Monthly 
 

Humidity, WT, rainfall,
TDS, pH, turb, AT 

DO 
MARS, CEEMDAN-
MARS, CEEMDAN-SVR, 
SVR, KRR, KNN, RF 

MODWT-MARS R, WI, RMSE, MAE 

[93] Sefidrud River Iran Monthly EC, Q EC 
SVR, W-SVR, ARIMA, W-
ARIMA, MLR, and W-
MLR, LWLR, W-LWLR 

W-LWLR 
RMSE, NSE, MAE, RAE, 
MSRE 
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[101] Kinta River  Malaysia Monthly 
DO, BOD, COD, Temp,
NH3, TS, Cl, Ca, PH Na

DO 

LSTM, ELM, HW, GRNN, 
SAE, WAE, LSTM-RF, 
ELM-RF, GRNN-RF and 
HW-RF 

HW-RF 
NSE, WI, RMSE, MAE, 
MSE, CC 

[102] Yangtze River China Weekly DO DO 

LSSVM, SSA-LSSVM, 
VMD-LSSVM, SVR, 
BPNN, VMD-SSA-
LSSVM 

VMD-SSA-LSSVM 
NSE, RMSE, MAE, MAPE, 
CC, R2 

[103] Tolo Harbour China 
bi-
weekly/mon
thly 

BOD, TIN, DO, PO4, 
Temp, Chl-a, SDD, pH 

HAB 

ANN (LM-PSO), 
ANN(LM-GA), 
ANN (GDM-PSO) 
ANN (GDM-GA), SVM 

ANN (LM-PSO) RMSE, CC 

[104] crab culture ponds China 10 min DO DO 

CEEMDAN-LZC-GOB-
LPSO-GRU, CEEMDAN-
GOBLPSO-GRU, GRU, 
CEEMDAN-LZC-GOB-
LPSO-LSTM, 
CEEMDAN-GOBLPSO-
LSTM, LSTM, 
CEEMDAN-LZC-GOB-
LPSO-RNN, CEEMDAN-
GOBLPSO-RNN, RNN, 
BPNN 

CEEMDAN-LZC-
GOBLPSO-GRU 

MAPE, RMSE R2 

[105] 
Huaihe River, Poto-
mac River 

China, US 
Weekly, 
every 15 min 

COD, DO, NH3-N COD, DO, NH3-N 
ANN, ARIMA, MLE, W-
MLE 

W-MLE  ARE, MRE 

[106] 
Bam Normashir 
Plain 

Iran Monthly 
EC, Cl, Na, Ca, Mg,
SAR 

Cl, EC, SAR 
FCM, GP, ANN, ANN-
PSO, IDW, RBF, kriging, 
NF-GP, NF-MCF 

NF-GP  RMSE, MAE, CC 

[107] Karaj River Iran Monthly BOD, Q BOD 
WANN, ANN, GP, DT, 
BN, WGP 

WGP MAE, RMSE, R 

[74] Credit River Canada hourly WT WT GA-LSTM, LSTM, RNN GA-LSTM 
R2, MAE, RMSE, RSR, 
mNSE, md, KGE 

[108] River of Shanghai Shanghai Daily 
P, N, BOD, NH4-NO3

COD 
index COD GM, RNN, LSTM-RNN LSTM-RNN RMSE, MAPE 

[75] Ashi River China Every 4 h NH3-N, TURB, EC NH3-N, TURB, EC BPNN, IGA-BPNN IGA-BPNN RMSE, MAE, MRE, R2 
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[109] 
Qiantang River, 
Zhejiang Province  

China Every 4 h 
permanganate index,
pH, TP, DO 

permanganate index,
pH, TP, DO 

BPNN, SVR, LSTM, GRU, 
SRN, RNNs-DS 

RNNs-DS RMSE MAE MAPE 

[110] Yamuna India Monthly BOD BOD ANFIS, ANN, W-ANFIS W-ANFIS MAE 

[111] Isfahan-Borkhar Iran Monthly 
SO4, Cl, HCO3, K, Na,
Mg, Ca  

EC, SAR, TH 
ANFIS-CGA, ANFIS-
ACOR, ANFIS-DE, AN-
FIS-PSO, ANFIS 

ANFIS-CGA R2, RMSE, MAPE, SI 

[112] Small Prespa Lake Greece Daily Chl-a, DO Chl-a, DO 

LSSVM, CEEMDAN-
LSSVM, VMD-
CEEMDAN-LSSVM, 
ELM, CEEMDAN-ELM, 
VMD-CEEMDAN-ELM   

VMD-CEEMDAN-
ELM   

R, RMSE, MAE, BIAS 

[113] 
South-to-North-
Water Diversion 
Project 

China Daily 
PI, Ph, TN, WT, turb,
EC, Chl, DO, DOM 

TN, WT, DOM, DO,
WVP, AT, PM2.5 

BPNN, CS-BP, PSO-BP, 
GRNN,  

CS-BP RMSE, MAPE 

[114] 
Nazlu Chay, Tajan, 
Zayandeh Rud and 
Helleh  

Iran Seasonal TDS, Cl, EC, Na TDS 

ANN, ANFIS-GP, ANFIS-
SC, GEP, WANN, WAN-
FIS, GP, WANFIS-SC, 
WGEP  

WGEP R, RMSE and MAE 

[56] offshore of Kuala  Terengganu Daily WT, pH, salinity, DO WT, pH, salinity, DO
ARIMA, ANN, ARIMA-
ANN 

ARIMA-ANN RMSE, MAE 

[115] Pearl River China Daily 
COD, NH4N, DO, EC,
WT, pH, TU 

COD, Tur WNN, ANN, FWNN FWNN R, R2, MAPE, RMSE, MSE 

[116] Aji-Chay River Iran Monthly EC EC 
ELM, ANFIS, WA-ELM, 
WA-ANFIS 

boosting multi-WA-
ELM, multi-WA-AN-
FIS 

RMSE, R2, NSE 

[89] Karun River Iran Monthly DO, Q, WT, BOD BOD 
SVR, ANFIS, WSVR, 
WANFIS 

WSVR RMSE, R2 
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6. Future Research Directions 
Azad et al. [68] suggested employing modified algorithms to enhance other types of 

ML methods that suffer comparable shortcomings and comparing these changed hybrid 
models to different physical and soft computing models. Shah et al. [69] proposed that 
other studies should employ extra AI models, such as ensemble forecasting combined 
with PSO, to further develop their performance with optimum parameters in modelling 
WQ factors. Li et al. [81] recommended that it is possible to create a deep network through 
layer-wise pre-training to collect deeper latent features to investigate the impact of raising 
the network layers of SAE (sparse auto-encoder) on predictive performance. Tiyasha et al. 
[28] mentioned that the MARS algorithm as a feature selector and the XGBoost algorithm 
as both a feature selector and a predictive method should be investigated to create various 
types of WQ data. In addition, the Boruta algorithm should be used to create scenarios to 
determine the best predictors’ cutoff value. Furthermore, an examination of uncertainty 
is required to determine the stochasticity of the data application using the suggested AI 
techniques (RF, cFores, Ranger) and XGBoost. Song et al. [97] stated that more effective 
pre-processing procedures for WQ data should be investigated to increase the model’s 
precision. Jamei et al. [98] stated that, in the future, an ensemble multi-wavelet transform 
(EMWT) paradigm could be employed to utilise the wavelets simultaneously. On the 
other hand, an ensemble tree-based method could be effective for combining the benefits 
of each complementary strategy to estimate surface water WQPs. Additionally, combined 
versions that incorporate more than one training technique for predictability 
improvement are recommended for such an issue of WQ parameters. 

Additionally, all of the studies reviewed here support the suggestions below: 
• It is recommended that the three data pre-processing steps be applied to avoid outliers 

and noise and to select the most reliable and precise data to be employed as predictors 
later. 

• Other techniques for pre-treatment data, such as EEMD and singular spectrum analy-
sis, are proposed. 

• Selection predictors are significant in determining the model’s performance and pre-
cision. Accordingly, it is advised that more efforts be made to select the optimal pre-
dictors’ combination; consequently, it is proposed that other techniques be used to 
choose the predictors, such as feature extraction methods, feature selection, and di-
mensionality reduction methods. 

• Applying hybrid metaheuristic algorithms and soft computing techniques in WQ pa-
rameter prediction has grown considerably in recent years. Nevertheless, there is still 
room for improvement concerning WQ parameter prediction. 

7. Conclusions 
This work attempted to review papers that employed hybrid methodologies to sim-

ulate WQ parameters. The selected papers in this review revealed that there has been an 
increasing tendency toward employing these methods in the area of WQ modelling in 
recent years. Combining data pre-processing techniques with metaheuristic algorithms 
and soft computing models has enhanced WQ prediction accuracy among the many mod-
elling approaches. Therefore, hybrid models are the most effective techniques that must 
be used to enhance the precision of WQ parameter predictions. A comprehensive hybrid 
model incorporates both pre-processing techniques and metaheuristic algorithms. Ac-
cordingly, a key strength of the current study is that it represents a comprehensive exam-
ination of all the above factors. 

Most of the previous research used the WQ parameters as predictors, and few of 
them applied other factors such as weather. For this type of data, models that incorporate 
only factors that have been proven effective are more precise than models that incorporate 
all factor data without testing variables’ efficiency. Additionally, most previous studies 
used one or two steps of pre-processing, which impacted the accuracy of prediction 
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models. Therefore, in future studies, the efficiency of the factors should be tested (predic-
tors) before applying all of the data as input to the forecast models and using normalisa-
tion and cleaning. Furthermore, although significant advances in hybrid model tech-
niques have been made recently, no new techniques have emerged as the best forecasting 
model. Consequently, WQ parameter forecasting remains a research problem, which 
leaves room for scholars to improve hybrid techniques for specific applications. 
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