117 research outputs found

    Inertia compensation while scanning screw threads on coordinate-measuring machines

    Full text link
    Usage of scanning coordinate-measuring machines for inspection of screw threads has become a common practice nowadays. Compared to touch trigger probing, scanning capabilities allow to speed up measuring process while still maintaining high accuracy. However, in some cases accuracy drasticaly depends on the scanning speed. In this paper a compensation method is proposed allowing to reduce the influence of some dynamic effects while scanning screw threads on coordinate-measuring machines

    Mobile Robot Localization using Panoramic Vision and Combinations of Feature Region Detectors

    Get PDF
    IEEE International Conference on Robotics and Automation (ICRA 2008, Pasadena, California, May 19-23, 2008), pp. 538-543.This paper presents a vision-based approach for mobile robot localization. The environmental model is topological. The new approach uses a constellation of different types of affine covariant regions to characterize a place. This type of representation permits a reliable and distinctive environment modeling. The performance of the proposed approach is evaluated using a database of panoramic images from different rooms. Additionally, we compare different combinations of complementary feature region detectors to find the one that achieves the best results. Our experimental results show promising results for this new localization method. Additionally, similarly to what happens with single detectors, different combinations exhibit different strengths and weaknesses depending on the situation, suggesting that a context-aware method to combine the different detectors would improve the localization results.This work was partially supported by USC Women in Science and Engineering (WiSE), the FI grant from the Generalitat de Catalunya, the European Social Fund, and the MID-CBR project grant TIN2006-15140-C03-01 and FEDER funds and the grant 2005-SGR-00093

    Irradiation leads to apoptosis of Kupffer cells by a Hsp27-dependant pathway followed by release of TNF-α

    Get PDF
    In a previous publication, we were able to show that irradiation of Kupffer cells, the liver resident macrophages, leads to an increased TNF-α concentration in the culture medium. The pathomechanisms underlying this phenomenon, however, remained to be elucidated. Here, we show that following irradiation of Kupffer cells, the apoptosis rate increased drastically within 48 h. At the same time, the total TNF-α concentration in cell lysates of Kupffer cells attached to the culture plate decreased. However, normalization of the TNF-α concentration with respect to cell number revealed that TNF-α concentration per attached cell remained constant during the observation period. Western blot analysis showed that heat shock protein 27 (Hsp27) is strongly downregulated and bax is upregulated in irradiated Kupffer cells as compared to sham-irradiated cells. Overexpression of Hsp27 in Kupffer cells was shown to prevent the effect of irradiation on bax expression, apoptosis and, at the same time, on increase of TNF-α concentration in the Kupffer cell medium. We conclude that irradiation of Kupffer cells leads to apoptosis because of downregulation of Hsp27 and consecutive upregulation of bax expression. Furthermore, we suggest that apoptosis of Kupffer cells leads to an increase of TNF-α concentration in the culture medium which may be due to cell death rather than active release or synthesis

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases
    • …
    corecore