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Mobile Robot Localization using Panoramic Vision and Combnations
of Feature Region Detectors

Arnau Ramisa, Adriana Tapudylember, IEEE Ramon Lépez de Mantaras, and Ricardo Toledo

Abstract— This paper presents a vision-based approach for
mobile robot localization. The environmental model is topéog-
ical. The new approach uses a constellation of different tygs
of affine covariant regions to characterize a place. This typ
of representation permits a reliable and distinctive envion-
ment modeling. The performance of the proposed approach is
evaluated using a database of panoramic images from differg
rooms. Additionally, we compare different combinations ofcom-
plementary feature region detectors to find the one that aclaves
the best results. Our experimental results show promising
results for this new localization method. Additionally, smilarly
to what happens with single detectors, different combinatins
exhibit different strengths and weaknesses depending on ¢h
situation, suggesting that a context-aware method to combe
the different detectors would improve the localization resilts.

Index Terms— Affine Regions Detectors, Harris Affine, Hes-
sian Affine, MSER, SIFT, GLOH, Topological Localization

. INTRODUCTION

sensors are usually used to provide richer scene informatio
Furthermore, vision units are cheaper, smaller and more
practical than large expensive laser scanners. Therefore,
this work, we propose a topological vision-based locailirat
approach.

In recent years, many appearance-based localization meth-
ods have been proposed [7], [8], [9]. SIFT (Scale Invariant
Feature Transform) features [9] have been widely used for
robot localization. The SIFT approach detects and extracts
feature region descriptors that are invariant to illumiomat
changes, image noise, rotation and scaling. Se et al. in
[9] used SIFT scale and orientation constraints so as to
match stereo images; least-square procedure was used to
obtain better localization results. The model designed by
Andreasson et al. [10] combines SIFT algorithm for image
matching and Monte-Carlo localization; their approaclesak
the properties of panoramic images into consideration. The

Finding an efficient solution to the robot localizationwork by [11] uses visual landmarks (SIFT features) and
problem will have a tremendous impact on the manner igeometrical constraints to perform localization.
which robots are integrated into our daily lives. Most tasks Another interesting subset of invariant features are the
for which robots are well suited demand a high degree cfffine covariant regions which can be correctly detected in a
robustness in their localizing capabilities before theg arwide range of acquisition conditions [12]. Therefore, &ilp

actually applied in real-life scenarios (e.g., assistaeks).

Anan and Hartley in [13] construct an image map based on

Since localization is a fundamental problem in mobileHarris Affine feature Regions with SIFT descriptors that is
robotics, many methods have been developed and discus$s@r used for robot localization.
in the literature. These approaches can be broadly clabsifie The work proposed by Tapus in [5] is closely related to this

into three major types: metric, topological and hybrid. NMet

work. Tapus et al. defined fingerprints of places as generic

approaches ([1], [2], [3]) are useful when it is necessary fadescriptors of environment locations. Fingerprints ofcpla

the robot to know its location accurately in terms of metriare circular lists of features and they are represented as a
coordinates (i.e. Cartesian coordinates). However, tate st sequence of characters where each character is an instiance o
of the robot can also be represented in a more qualitatigespecific feature type. The authors used a multi-percetion
manner, by using a topological map (i.e. adjacency grapdystem and global low-level features (i.e., vertical edges
representation) ([4], [5], [6]). Because the odometry doesolor blobs, and corners) are employed for localization.
not provide enough and complete data in order to localize Monetheless, our current approach has significant diféeren
mobile autonomous robot, laser range finders and/or visidrom their methodology.

Our novel localization approach uses only panoramic
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ﬁi';’;kdem. To improve the results and discard false matches, the

constellation of feature regions extracted from a panatami
image at a specific location. We decided to use combinations
of the following three feature region detectors: the MSER
(Maximally Stable Extremal Regions)[14], the Harris-A#in
[15], and the Hessian-Affine [12], which have shown to
perform better when compared to other region detectors.
When a newsignatureis acquired, it is compared to the
stored panoramas from the a priori map. The panorama with
the highest number of matches is selected as the correspon-

essential matrix is computed and the outliers filtered. Ikina
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the panorama with the highest number of inliers is selected
as the best match.

In our approach images are acquired using a rotating
conventional perspective camera. When a set of images
covering the360 ° is acquired, they are projected to cylin-
drical coordinates and the feature regions are extractdd an
described. The descriptors constellation is next contecdic
automatically.

Hence, by using feature regions to constructglgmature
of a location our methodology is much more robust to
occlusions and partial changes in the image than the ap-
proaches using global descriptors. This robustness isnaota
because many individual regions are used for eg@gature
of a location and, thus, if some of them disappear the
constellation can still be recognized.

This paper is organized as follows. Section Il briefly
describes the different affine covariant region detectas a
descriptors that we used in our work. Section Il presents
the localization procedure in detail. Experimental result
obtained with our mobile robot equipped with a Sony DFW-
VL500 camera mounted on a Directed Perception pan tilt
unit are presented in Section IV. Finally, Section V corgain
a discussion of the proposed approach and future research
directions.

II. FEATURE REGIONS AND DESCRIPTORS

An essential part of our approach is the extraction of
discriminative information from a panoramic image so it
can be recognized later under different viewing conditions
This information is extracted using affine covariant region
detectors. These detectors find regions in the image that can
be identified even under severe changes in the point of view,
illumination, and/or noise.

Recently Mikolajczyk et al. [12] reviewed the state of the
art of affine covariant region detectors individually. Iristh
review they concluded that using several region detectors a
the same time could increase the number of matches and
thus improve the results. Hence, in our work, we have used
all the combinations of the following three affine covariant
region detectors: (1) Harris-Affine, (2) Hessian-Affinedan 3)
(3) MSER (Maximally Stable Extremal Regions), so as to
increase the number of detected features and thus of paltenti
matches. Examples of detected regions for the three region
detectors can be seen in Fig. 1. These three region detectors
have a good repeatability rate, a reasonable computational
cost and they are briefly detailed below.

2)

where I(z,0) is the derivative at positiorr of the
image smoothed with a Gaussian kernel of scale
From this matrix, the cornerness of a point can be
computed using the following equation:

R = Det(M) — kTr(M)?, 2)

where k is a parameter usually set t0.4. Local
maxima of this function is found across the scales, and
the approach proposed by Lindeberg is used to select
the characteristic scales.

Next, the parameters of an elliptical region are esti-
mated minimizing the difference between the eigenval-
ues of the second order moment matrix of the selected
region. This iterative procedure finds an isotropic re-
gion, which is covariant under affine transformations.
The isotropy of the region is measured using the
eigenvalue ratio of the second moment matrix:

Amin (N)
Amaz (M) (3)

where( varies from 1 for a perfect isotropic structure

to 0, and\,,;, () and \,q. (1) are the two eigenval-

ues of the second moment matrix of the selected region
at the appropriate scale. For a detailed description of
this algorithm, the interested reader is referred to [16].
The Hessian-Affine detector is similar to the Harris-
Affine, but the detected regions are blobs instead of
corners. The base points are detected in scale-space as
the local maxima of the determinant of the Hessian
matrix:

Q=

Lo(x,0) Ipy(z,0)
Ly(@.0) Lywo) | @

wherel,, is the second derivative at positianof the
image smoothed with a Gaussian kernel of seal€he
remainder of the procedure is the same as the Harris-
Affine: base points are selected at their characteristic
scales with the method by Lindeberg and the affine
shape of the region if found.

The Maximally Stable Extremal Regions (MSER) de-
tector proposed by Matas et al. [14] detects connected
components where the intensity of the pixels is several
levels higher or lower than the intensity of all the
neighboring pixels of the region. Regions selected with
this procedure may have an irregular shape, so the
detected regions are approximated by an ellipse.

H =

1) The Harris-Affine detector is an improvement of the pacause affine covariant regions must be compared, a

widely used Harris corner detector. It first detect

fommon representation is necessary. Therefore all the re-

Harrls_ corners in the scale-space with automatic Scatﬁons detected with any method are normalized by mapping
selection using the approach proposed by Lindeberg fie getected elliptical area to a circle of a certain size.

[15], and then estimates an elliptical affine covariant once the affine covariant regions are detected and nor-
region around the detected Harris corners. The Harrigjizeq, to reduce even more the effects caused by changes
corner detector finds corners in the image using th§ the viewing conditions, these regions are characterized

description of the gradient distribution in a local neigh
bourhood provided by the second moment matrix:

B IX(z,0) I.1,(z,0)
M = L1,(x,0) Iﬁx,a) ’ @)

‘using a feature region descriptor. In our work, we have used
Scale Invariant Feature Transform (SIFT) [17] and Gradient
Location-Orientation Histogram (GLOH) [18]. These two

descriptors were found to be the best in a comparison of
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Fig. 1. Example of regions for the three affine covariantaegietectors, from left to right: Harris-Affine, HessianfiAé and MSER.

various state of the art region descriptors [18]. The SIFWhere NV, is the distance to the first nearest neighbor (the
descriptor computes a 128 dimensional descriptor vectibr wiselected as match) and NV, is the distance to the second
the gradient orientations of a detected region. In short, toearest neighbor. Lowe found in his work that this distance
construct the descriptor vector the SIFT procedure dividastio eliminated 90% of false matches while removing only
the region in 16 rectangular sub-regions and then, for e%% of correct matches.
ery sub-region, it builds a histogram of 8 bins with the The essential matrix [19] is computed using these matches
gradient orientations weighted with the gradient magritudto enforce the geometrical constraints that relate the two
to suppress the flat areas with unstable orientations. Thiews and reject the false correspondences that may have
descriptor vector is obtained by concatenating the hisimgr passed the previous stage.
for every sub-region. The GLOH descriptor is similar to The computation of this matrix is a model fitting process
SIFT, with two main differences: the sub-regions are definetthat gives as output both the model itself (the essential
in a log-polar way, and the resulting descriptor vector hasatrix) and a subset of correspondeces that agree with
272 dimensions but it is later reduced to 128 with a PCA.the computed model. The bigger the inliers subset, the
These two descriptors are based on the same principigore similar the novel constellation and the map node. The
but with slightly different approaches. As they have namethod used to compute the essential matrix from the found
complementary properties, our objective in this comparisocorrespondences is the 8-point algorithm with the RANdom
is to determine which one achieves the best performancg@Ample Consensus or RANSAC to reject false matches.

Therefore we have not used them at the same time. The matchings are classified as inliers and outliers de-
pending on the distance of the points to the epipolar simusoi
l1l. APPEARANCE-BASED LOCALIZATION described by the essential matrix. As well as in conventiona

The topological localization schema we propose consistameras, in cylindrical coordinates the essential mateix v
in a map represented as a graph where nodes are plaifess:
visited by the robot, and edges stand for the accessibility pg Ep1 =0, (6)
information between them. Each node of the graph has ar]1 L L
. : A : . where po and p; are projections of a scene point in the
associategignature which, in our case, is a constellation of

. ; . . : . panoramic images, ané is the essential matrix relating
affine covariant regions characterized with a feature @@scr .
tor the two panoramas. However, contrarily to the case of

. . . qonventional cameras, the intersection of the projectiang
When a novel panoramic image is acquired, a new constel-

lation of features is extracted with the methods described W'th a cylindrical surface does not define a line but an edijps

. . o . and once the cylinder is unrolled, it appears as a sinusoid.
the previous section, and it is compared with those stor . o C
. . L on e equation of this sinusoid is:
in the map. Finally, the most similar is selected as the
corresponding one. The procedure is depicted in Fig. 2. In S (g) = _nmcos(qﬁ) + nysin(Q) %
order to find correspondences between the feature regions of n, ’
different views, a matching stage is necessary. In thisestagyhere ~, (¢) is the height corresponding to the anglen
each descriptor from the novel constellation is comparggle panorama, and; = [ne,ny,n.] is the epipolar plane

to all the descriptors of the other constellation using thgormal, obtained with the following expression,
Euclidean distance, and the nearest neighbor is selected as

the corresponding one. To reject false matches, the distanc m =pg E. (8)

of the first and the second nearest neighbor are compareg, agvantage of the proposed method is that, even though in
and if they are too similar the match is discarded. Theis work it is conceived as a topologic localization method
threshold value used to reject false matches is the oR&mplicitly recovers the essential matrix between theuatt
proposed by Lowe in [17]: view and the reference view. In [20] the authors perform
NNy different experiments to assess the accuracy of the compute

NN, > 0.8, (5)  essential matrix against ground truth data. This essential




New panoramic
image is acquired

Extraction of the affine
covariant regions
from the panorama.
Description of the
regions using SIFT

Matching of the novel
constellation with the
ones stored in the
map. RANSAC is
used to discard false

The constellation of the
map with the highest
number of inliers is
selected as the corres-
ponding one.

or GLOH correspondences.

Fig. 2. Steps for panorama-based localization.

matrices can be used to compute the metric localization in
reference to the map node using for example the technique
proposed in [21]. This information can be then used for
metric local navigation with no extra computational cost.

IV. EXPERIMENTAL RESULTS s AN

The objective of the present work is twofold: In the first
place we want to validate the proposed method for global
localization and, in second place, we want to experimentall
determine if using at the same time different region detecto  AveraGE PERCENTAGE OF CORRECTLY LOCALIZED PANORAMAS
improves significantly the localization results. Therefone  across ALL SEQUENCESFOR CONVENIENCE WE HAVE LABELEDM:
acquired multiple panoramas of different rooms and sediecte MSgR, HA: HarRRIS-AFFINE, HE: HESSIAN-AFFINE, S: SIFT, G:
some of them as map nodes. Then we used the remaining GLOH.
panoramas to perform a localization test as explained in

Fig. 3. The camera and pan-tilt unit used to take the images.

TABLE |

Section Ill. Although successive images acquired by the Combination | Correct Localization
robot while moving in the room could be used to incremen- ',\\/',,:g gg:ig;ﬂ
tally refine the localization, in this experiment we haveyonl HA+G 68.76%
considered the worst case scenario, where only one image HA+S 73.55%
per room is available to localize the robot. :Eﬁ ggéigﬁg
The test-bed data used in this work consists in 18 se- M*HETG 59.51%
quences of panoramas from rooms in various buildings M+HE+S 57.44%
Each sequence consists of several panoramas acquired every ':@::E:g SZ-;%
20 cm following a straight line predefined pqth. Thls_ type NHATG 69:050/2
of sequences are useful to check the maximum distance M+HATS 64.18%
at which a correct localization can be performed. In order M+HA+HE+G 64.93%
to make the data set as general as possible, rooms with MYHAYHE+S 62.1%

a wide range of characteristics have been selected. For

example some sequences correspond to long and narWire, put is more computationally expensive than using
corridors, while others have been taken in big hallwaygidar o feature matches. Although the panoramic images were
laboratories with repetitive patterns or individual ofSceé  ongtructed for validation purposes, the constellatiohs o
The panoramas have been constructed by stitching togethgg re region descriptors were not extracted from them.
multiple views taken from a fixed optical center with ajngiead, the regions from the original images projected to
Directed Perception PTU-46-70 pan-tilt unit and a Sonyyjingrical coordinates where used. The reason for this is
DFW-VLS00 camera. The camera and pan-tilt unit can bg; 4y0id false regions introduced by possible new artifacts
Seen in F'@!- 3. , ) created during the stitching process. The panoramas built
The region detectors and descriptors provided by thgiih the stitching method where all correctly constructed,
authors of [12] athttp://www.robots.ox.ac.uk/ with only some small vertical misalignments, even in the
~ vgg/research/affine/ were used to extract the c,qe of changes in lightning, reflections, multiple inséanof
affine-covariant regions from the images. To construct thgyiects or lack of texture. The sequences have been acquired

panoramas, the images acquired with the camera are piR-ncontrolled environments, with nuisances such as sever
jected to cylindrical coordinates, and then the displac€me;mination changes, repetitive patterns and areas witho

between each pair of images is computed. To compute the,+re in addition to the changes in point of view.

d_lsplacements, the same feature points used for IOC"’II'Z"’\'In order to fulfill our two objectives, we tested all possible
tion are used and, if not enough points are detected, a

correlation-based approach is employed. This approach finf(?omblnatmns of the three selected region detectors with tw

: . . ifferent descriptors. As can be seen in the Table I, which
the displacement where the highest correlation between t 3 o
shiows the results of the localization test for every com-

Egg:g er);té?hcézdxgm;hviéwagvzsn'sir?ctmlgvgg'sghsfc\?;malg%ination, most combinations have an average performance
y Véreater than 60% of correct localization across all seqgenc
The combinations that achieved the best performance in the

1The data-set can be downloaded frdrtip://www.iiia.csic. ) ' ) > )
localization test where Harris-Affine with SIFT and with

es/ ~aramisa .



TABLE Il
AVERAGE PERCENTAGE OF CORRECTLY LOCALIZED PANORAMAS FOR
SOME INTERESTING SEQUENCESTHE NAMING CONVENTION IS THE
SAME AS IN TABLE |.

nition is possible. This information is useful, for examgle

avoid building a too sparse or too dense topological map.
As can be seen in Fig. 4, up to approximately 2.5 meters

away from the original point the probability of recogniziag

Combination | Lab | Corridorl | Corridor2 | Conf. Room panorama is quite high for all the combinations of methods
",cl:g‘ 3832 ﬁzf; égzz 18822 that achieved the best performance (i.e. Harris-Affine with
AATG 50% T 53% 5% 100% both GLOH and SIFT, Harris-Affine, Hessian-Affine and
HA+S 30% 68% 25% 100% GLOH; and MSER, Harris-Affine and GLOH). To compare
HE+G 30% 84% 15% 85% the results of the chosen detectors and descriptors to @noth

M:E:G 5822 Zizﬁ %822 %22 state-of-the-art feature region detector, we performesl th
M+HETS 10% 16% 30% 54% same experiments using the method proposed by Lowe in
HA+HE+G | 50% 89% 50% 69% [17]. This method uses as initial points the local maxima
':A/iLHAEES ‘2‘8?;0 Zfl’zj" ing’ fg{;’ﬁj of the Differences of Gaussians (DoG), defines a circular
A — o —ae = s region around these initial points, and then SIFT is used
M+HATHE+G | 40% 26% 35% 85% to describe the selected regions. For our tests we used the
M+HA+HE+S | 50% 32% 35% 77% demo program provided by Lowe d&ittp://www.cs.

ubc.ca/ ~lowe/keypoints/

On average, using points detected with the DoG and

GLOH, MSER. and Harns-.Afnne.descnbe.d using GI‘OH’SIFT, the correct location was selected 51.87% of the times.
and Harris-Affine and Hessian-Affine described with GLOH ) .
Hf)wever, the results were pretty irregular depending on the

These methods correctly classify more than a 67% of the tes .
panoramas. room. For example, the results from the corridor 1 sequence

had only 5% of the panoramas correctly localized, while

The different region detectors achieved varying resultg, conference room of the research center achieved 85%
depending on the characteristics of each room. For example .o rect classifications. In most of the sequences, all the

those methods that include Hessian-Affine but not MSERine_covariant region detectors outperformed the resfit
performed particularly well in narrow and long corridors1 O s detector.

the other hand, in scenes with numerous repetitive patterns

In terms of computational complexity, the current im-
MSER outperformed the other methods. Table Il presen P plextty

Its f ticularly int i Tt fi E‘ﬁementation of the method implies comparing all the de-
results forsome particurarly Interesting sequences. Iscriptors from all the panoramas with the descriptors of the

sequence (column "Lab” of Table 1) is from the A .
laboratory, which has a considerable number of repetiti@ew panorama and performing a RANSAC step for every

g anorama in the database. In order to use this localiza-
textures due to the. bargodes of some artificial landmar on method in a real robot, techniques to alleviate this
As can be seen, in this sequence the best performance
is achieved by MSER. Another important factor for the
superiority of MSER in this sequence is that it is not
very long, just about two meters. The second sequenc ——HasG
("Corridor 1") is from a long and narrow corridor of the
[lIA. In this sequence the best performance is achieved b os}
the combination of Hessian-Affine and Harris-Affine with
the GLOH descriptor, and closely followed by the Hessian
Affine alone. The third sequence ("Corridor 2”) is from
another corridor, but in this case one of the walls is made ot
of glass and therefore the exterior can be seen. However, .|
this sequence bright sunlight has burned the images and or
some texture remains. As can be seen in the table, due to t
lack of texture, the results for individual methods are very o1
low, but the combinations of different methods (especially
Harris-Affine and Hessian-Affine) increase the performanc
quite a bit.

Finally, the fourth sequence ("Conf. Room”) is from the
conference room of the IlIA. In this room individual methods
had a very good performance, better than the combination
The conference room has many repetitive textures and ‘ ‘ . . ‘ . .
considerable amount of texture, and therefore combingtior ° 50 1o 150 200 250 a0 350 400
of different methods have a higher outlier ratio than theesas -
of just one detector. Another interesting result obtained irig 4. percentage of correct localizations against distefor the four

this work is the maximum distance at whitch a reliable recogpetter combinations according to Table I. The notation éssthAme as in the
Table.

=

at




computational load should be used. Global descriptors t@e] A. Castellanos, J. and D. Tardos, Mpbile Robot Localization and

reject unlikely panoramas could greately reduce the number
of nodes from the map that must be considered. Anothe
option could be using a K-D tree to accelerate the matching

procedure in a similar way as it is done in [17].

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed and evaluatedsignatureto

characterize places that can be used for global localizatio
This signatureconsists of a constellation of feature region

descriptors, computed from affine-covariant regions exdch

from a panoramic image acquired in the place we want
to add to the map. Later, thesggnaturesare compared
to the constellation extracted from a new panoramic imag

using geometric constraints, and the most similignature

is selected as the current location. To compare the differe
signatures the 8-point algorithm with RANSAC to reject

false matches is used.

Regarding the validation of the global localization schemal®
the results obtained show that by using the presented method
a room can be reliably recognized from a distance between
two or three meters away from the point where the initial®!
panorama was acquired. The highest score was achieved
by the combination of Harris-Affine and SIFT, with which
approximately 74% of the localization tests were succéssful!

We have also compared the results of the proposed affine-
covariant region detectors with the scale-invariant regio
detector proposed by Lowe in [17], widely used in robot!?
navigation, and showed that the affine-covariant regions

outperformed Lowe’s scale-invariant method.

Different region detectors exhibit different strengthglan
weaknesses. No single detector had a perfect performance
in every situation: Harris-Affine worked well almost every-[14]
where, but in rooms with many repetitive patterns the per-

Map Building: Multisensor Fusion Approach Kluwer Academic
Publisher, 1999.

S. Thrun, “Probabilistic algorithms in roboticsArtificial Intelligence
Magazine vol. 21, pp. 93-109, 2000.
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with uncertainty using scale-invariant visual landmdrlsternational
Journal of Robotics Research (IJRRjol. 21, no. 8, pp. 735-758,
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H. Andreasson, A. Treptow, and T. Duckett, “Localipatifor mobile
robots using panoramic vision, local features and parfiders,” in
In Proceedings of the IEEE International Conference on Ricb@nd
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IEEE/RSJ International Conference on Intelligent Robatd 8ystems
(IROS) Workshop - From Sensors to Human Spatial Concé¢pts-
jing, China), pp. 53-58, 2006.

] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zissermah Matas,

F. Schaffalitzky, and L. V. Kadir, T.and Gool, “A comparisohaffine
region detectors,International Journal of Computer Visigwol. 65,
no. 2, pp. 43-72, 2005.

C. Silpa-Anan and R. Hartley, A., “Localization using enage-map,”
in In Proceedings of the 2004 Australasian Conference on Razbot
and Automation (Canberra, Australia), 2004.

J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust widsdiine
stereo from maximally stable extremal regions,” Im Proceedings
of the British Machine Vision Conference (BMVC'02Fardiff, UK),

formance decreased and MSER achieved a higher percentage 2002.
of success. In narrow and |ong corridors Hessian-Affine oufl5] T. Lindeberg, “Feature detection with automatic scalkdection,”

performed the other methods. Additionally, tests perfatme
combining different region detectors show that simply gsin[i6]
at the same time different types of features does not improve

the results directly; nor in the case of different roomsthregi

in the maximum distance. However, more advanced methods
to combine types of features, such as voting schemas, hd¥@
shown improvements in similar schemes [22], and perhaps

it could also improve our approach.

An interesting line of continuation for this research would
be investigating context-aware methods to combine d'|f|°ere[20
types of feature regions empowering the strengths of each
type while lowering its weaknesses. Another line of contin-
uation that could significantly ameliorate the results wloul ,,
be improving the descriptor matching strategy used, whic

was not the focus of this work.
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