34 research outputs found
Enhancing miRNA therapeutic efficacy through combinatorial targeting and vehicle free delivery
New alternative therapies to treat cancer have emerged such as the use of small molecules that target key oncogenic drivers. For instance, clinically relevant tumor suppressive microRNAs (miRNAs) that target key oncogenic drivers have been identified as potential therapeutics to treat cancer. MiRNAs are small non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. It has been shown that aberrant miRNA expression, through misexpression of miRNA target genes, can have profound cellular effects leading to a variety of diseases, including cancer. While altered miRNA expression contributes to a cancerous state, restoration of miRNA expression has therapeutic benefits. For example, ectopic expression of miRNA-34a (mir-34a), a tumor suppressor miRNA that is a direct transcriptional target of p53 and thus is reduced in p53 mutant tumors, has clear effects on cell proliferation and survival in murine models of cancer. It is expected that miRNA replacement therapies will have profound effects in the clinic; however, miRNA therapeutics are still in their infancy and there are critical challenges that need to be addressed for the advancement of miRNA-based therapies. Firstly, one of the biggest challenges for miRNA advancement into the clinic is efficient delivery of miRNA mimics due to problems such as delivery-associated toxicity, poor transfection, systemic clearance, poorly understood biodistribution, degradation in circulation, immune response, and endosomal sequestration. Secondly, strategies to enhance the therapeutic efficacy of a miRNAs, such as through combinatorial miRNA therapeutics, have yet to be explored meticulously
Accretion vs. colliding wind models for the gamma-ray binary LS I + 61 303: An assessment
Context. LS I +61 303 is a puzzling Be/X-ray binary with variable gamma-ray emission up to TeV energies. The nature of the compact object and the origin of the high-energy emission are unclear. One family of models invokes particle acceleration in shocks from the collision between the B-star wind and a relativistic pulsar wind, whereas another centers on a relativistic jet powered by accretion from the Be star decretion disc onto a black hole. Recent high-resolution radio observations showing a putative "cometary tail" pointing away from the Be star near periastron have been cited as support for the pulsar-wind model.
Aims. We wish to carry out a quantitative assessment of these competing models.
Methods. We apply a "Smoothed Particle Hydrodynamics" (SPH) code in 3D dynamical simulations for both the pulsar-windinteraction and accretion-jet models. The former yields a dynamical description of the shape of the wind-wind interaction surface. The latter provides a dynamical estimation of the accretion rate under a variety of conditions, and how this varies with orbital phase.
Results. The results allow critical evaluation of how the two distinct models confront the data in various wavebands. When one accounts for the 3D dynamical wind interaction under realistic constraints for the relative strength of the B-star and pulsar winds, the resulting form of the interaction front does not match the putative "cometary tail" claimed from radio observations. On the other hand, dynamical simulations of the accretion-jet model indicate that the orbital phase variation of accretion power includes a secondary broad peak well away from periastron, thus providing a plausible way to explain the observed TeV gamma ray emission toward apastron.
Conclusions. Contrary to previous claims, the colliding-wind model is not clearly established for LSI +61 303, whereas the accretionjet model can reproduce many key characteristics, such as required energy budget, lightcurve, and spectrum of the observed TeV gamma-ray emission.Facultad de Ciencias Astronómicas y GeofísicasInstituto Argentino de Radioastronomí
Use of cinacalcet for the management of hyperparathyroidism in patients with different degrees of renal failure
Background: The effects of cinacalcet in persistent and/or hypercalcaemia-associated secondary hyperparathyroidism (SHPT) have been described in patients on dialysis.
Objectives: To evaluate the efficacy and safety of cinacalcet in SHPT not on dialysis and its effects on bone turnover markers.
Methods: Non-randomised, longitudinal, observational, analytical study of patients with chronic kidney disease (CKD) and SHPT (PTH> 80 pg/mL) as well as normo- or hypercalcaemia (≥8.5mg/dL), treated with cinacalcet.
Results: Mean cinacalcet dose was 30mg/day in 66.7%. We studied 15 patients (10 women), aged 66.0±17.93years. The aetiology was unknown in 20% of cases. Sociodemographic variables and renal function parameters were recorded. We compared values at baseline as well as after 6 and 12 months. Calcium (10.3±0.55 vs. 9.4±1.04) and iPTH (392.4±317.65 vs. 141.8±59.26) levels decreased. Increased levels of phosphorus (3.7±1.06 vs. 3.9±0.85) and ß-CTX (884.2±797.22 vs. 1053.6±999.00) were detected, although there were no significant changes in GFR, urinary calcium or other bone markers. Two patients withdrew from the study (gastrointestinal intolerance and parathyroidectomy, respectively).
Conclusions: Cinacalcet at low doses is effective in the management of SHPT in CKD patients who are not on dialysis. Its use reduces iPTH and calcaemia, without causing serious side effects or significant changes in renal function.
Keywords: Bone turnover markers; Calcio; Calcium; Chronic kidney disease; Cinacalcet; Enfermedad renal crónica; Fósforo; Hiperparatiroidismo secundario; Hormona paratiroidea; Marcadores de recambio óseo; Parathyroid hormone; Phosphorus; Secondary hyperparathyroidism
Accretion vs. colliding wind models for the gamma-ray binary LS I + 61 303: An assessment
Context. LS I +61 303 is a puzzling Be/X-ray binary with variable gamma-ray emission up to TeV energies. The nature of the compact object and the origin of the high-energy emission are unclear. One family of models invokes particle acceleration in shocks from the collision between the B-star wind and a relativistic pulsar wind, whereas another centers on a relativistic jet powered by accretion from the Be star decretion disc onto a black hole. Recent high-resolution radio observations showing a putative "cometary tail" pointing away from the Be star near periastron have been cited as support for the pulsar-wind model.
Aims. We wish to carry out a quantitative assessment of these competing models.
Methods. We apply a "Smoothed Particle Hydrodynamics" (SPH) code in 3D dynamical simulations for both the pulsar-windinteraction and accretion-jet models. The former yields a dynamical description of the shape of the wind-wind interaction surface. The latter provides a dynamical estimation of the accretion rate under a variety of conditions, and how this varies with orbital phase.
Results. The results allow critical evaluation of how the two distinct models confront the data in various wavebands. When one accounts for the 3D dynamical wind interaction under realistic constraints for the relative strength of the B-star and pulsar winds, the resulting form of the interaction front does not match the putative "cometary tail" claimed from radio observations. On the other hand, dynamical simulations of the accretion-jet model indicate that the orbital phase variation of accretion power includes a secondary broad peak well away from periastron, thus providing a plausible way to explain the observed TeV gamma ray emission toward apastron.
Conclusions. Contrary to previous claims, the colliding-wind model is not clearly established for LSI +61 303, whereas the accretionjet model can reproduce many key characteristics, such as required energy budget, lightcurve, and spectrum of the observed TeV gamma-ray emission.Facultad de Ciencias Astronómicas y GeofísicasInstituto Argentino de Radioastronomí
Charge density wave in layered La1-xCexSb2
The layered rare-earth diantimonides RSb2 are anisotropic metals with generally low electronic densities whose properties can be modified by substituting the rare earth. LaSb2 is a nonmagnetic metal with a low residual resistivity presenting a low-temperature magnetoresistance that does not saturate with the magnetic field. It has been proposed that the latter can be associated to a charge density wave (CDW), but no CDW has yet been found. Here we find a kink in the resistivity above room temperature in LaSb2 (at 355 K) and show that the kink becomes much more pronounced with substitution of La by Ce along the La1-xCexSb2 series. We find signatures of a CDW in x-ray scattering, specific heat, and scanning tunneling microscopy (STM) experiments in particular for x≈0.5. We observe a distortion of rare-earth-Sb bonds lying in-plane of the tetragonal crystal using x-ray scattering, an anomaly in the specific heat at the same temperature as the kink in resistivity and charge modulations in STM. We conclude that LaSb2 has a CDW which is stabilized in the La1-xCexSb2 series due to substitutional disorder.E.H. acknowledges the support of Departamento Administrativo de Ciencia, Tecnología e Innovación, COL-CIENCIAS (Colombia) Programa Doctorados en el Exterior Convocatoria 568-2012. This work was supported by the Spanish MINECO (FIS2014-54498-R, MAT2011-27470-C02-02, and CSD-2009-00013), by the European Union (Graphene Flagship Contract No. CNECT-ICT-604391 and COST MP1201 action), and by the Comunidad de Madrid through programs Nanofrontmag-CM (S2013/MIT-2850) and MAD2D-CM (S2013/MIT-3007). We acknowledge MINECO and CSIC for financial support and for provision of synchrotron radiation facilities and would like to thank the SpLine BM25 staff for assistance in using the beamline
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Canagliflozin and renal outcomes in type 2 diabetes and nephropathy
BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
MicroRNAs in Cancer: A Historical Perspective on the Path from Discovery to Therapy
Recent progress in microRNA (miRNA) therapeutics has been strongly dependent on multiple seminal discoveries in the area of miRNA biology during the past two decades. In this review, we focus on the historical discoveries that collectively led to transitioning miRNAs into the clinic. We highlight the pivotal studies that identified the first miRNAs in Caenorhabditis elegans to the more recent reports that have fueled the quest to understand the use of miRNAs as markers for cancer diagnosis and prognosis. In addition, we provide insights as to how unraveling basic miRNA biology has provided a solid foundation for advancing miRNAs, such as miR-34a, therapeutically. We conclude with a brief examination of the current challenges that still need to be addressed to accelerate the path of miRNAs to the clinic: including delivery vehicles, miRNA- and delivery-associated toxicity, dosage, and off target effects
Overexpression of the regulatory subunit of glutamate-cysteine ligase enhances monoclonal antibody production in CHO cells
For decades, Chinese hamster ovary (CHO) cells have been the preferred host for therapeutic monoclonal antibody (mAb) production; however, increasing mAb titer by rational engineering remains a challenge. Our previous proteomic analysis in CHO cells suggested that a higher content of glutathione (GSH) might be related to higher productivity. GSH is an important antioxidant, cell detoxifier, and is required to ensure the formation of native disulfide bonds in proteins. To investigate the involvement of GSH in mAb production, we generated stable CHO cell lines overexpressing genes involved in the first step of GSH synthesis; namely the glutamate-cysteine ligase catalytic subunit (Gclc) and the glutamate-cysteine ligase modifier subunit (Gclm). The two genes were reconstructed from our RNA-Seq de novo assembly and then were functionally annotated. Once the sequences of the genes were confirmed using proteogenomics, a transiently expressed mAb was introduced into cell lines overexpressing either Gclc or Gclm. The new cell lines were compared for mAb production to the parental cell line and changes at the proteome level were measured using SWATH. As per our previous proteomics observations, overexpressing Gclm improved productivity, titer, and the frequency of high producer clones by 70%. In contrast, overexpressing Gclc, which produced a higher amount of GSH, did not increase mAb production. We show that GSH cannot be linked to higher productivity and that Gclm may be controlling other cellular processes involved in mAb production yet to be elucidated. Biotechnol. Bioeng. 2017;114: 1825-1836. (c) 2017 Wiley Periodicals, Inc