47 research outputs found

    Bragg spectroscopy for measuring Casimir-Polder interactions with Bose-Einstein condensates above corrugated surfaces

    Get PDF
    We propose a method to probe dispersive atom-surface interactions by measuring via two-photon Bragg spectroscopy the dynamic structure factor of a Bose-Einstein condensate above corrugated surfaces. This method takes advantage of the condensate coherence to reveal the spatial Fourier components of the lateral Casimir-Polder interaction energy.Fil: Moreno, Gustavo Ariel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; ArgentinaFil: Dalvit, Diego A. R.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; Argentin

    Cosmological Magnetic Fields from Gauge-Mediated Supersymmetry-Breaking Models

    Get PDF
    We study the generation of primordial magnetic fields, coherent over cosmologically interesting scales, by gravitational creation of charged scalar particles during the reheating period. We show that magnetic fields consistent with those detected by observation may obtained if the particle mean life \tau_s is in the range 10^{-14} sec \leq \tau_s \leq 10{-7} sec. We apply this mechanism to minimal gauge mediated supersymmetry-breaking models, in the case in which the lightest stau \tilde\tau_1 is the next-to-lightest supersymmetric particle. We show that, for a large range of phenomenologically acceptable values of the supersymmetry-breaking scale \sqrt{F}, the generated primordial magnetic field can be strong enough to seed the galactic dynamo.Comment: 12 pages, Latex. Final version accepted for publication in Phys. Lett.

    Nonequilibrium Quantum Field Theory

    Get PDF
    Bringing together the key ideas from nonequilibrium statistical mechanics and powerful methodology from quantum field theory, this 2008 book captures the essence of nonequilibrium quantum field theory. Beginning with the foundational aspects of the theory, the book presents important concepts and useful techniques, discusses issues of basic interest, and shows how thermal field, linear response, kinetic theories and hydrodynamics emerge. It also illustrates how these concepts are applied to research topics including nonequilibrium phase transitions, thermalization in relativistic heavy ion collisions, the nonequilibrium dynamics of Bose-Einstein condensation, and the generation of structures from quantum fluctuations in the early Universe. This self-contained book is a valuable reference for graduate students and researchers in particle physics, gravitation, cosmology, atomic-optical and condensed matter physics. It has been reissued as an Open Access publication

    Nonequilibrium Quantum Field Theory

    Get PDF
    Bringing together the key ideas from nonequilibrium statistical mechanics and powerful methodology from quantum field theory, this 2008 book captures the essence of nonequilibrium quantum field theory. Beginning with the foundational aspects of the theory, the book presents important concepts and useful techniques, discusses issues of basic interest, and shows how thermal field, linear response, kinetic theories and hydrodynamics emerge. It also illustrates how these concepts are applied to research topics including nonequilibrium phase transitions, thermalization in relativistic heavy ion collisions, the nonequilibrium dynamics of Bose-Einstein condensation, and the generation of structures from quantum fluctuations in the early Universe. This self-contained book is a valuable reference for graduate students and researchers in particle physics, gravitation, cosmology, atomic-optical and condensed matter physics. It has been reissued as an Open Access publication

    Primordial fluctuations from nonlinear couplings

    Full text link
    We study the spectrum of primordial fluctuations in theories where the inflaton field is coupled to massless fields and/or to itself. Conformally invariant theories generically predict a scale invariant spectrum. Scales entering the theory through infrared divergences cause logarithmic corrections to the spectrum, tiltilng it towards the blue. We discuss in some detail whether these fluctuations are quantum or classical in nature.Comment: 12 pages, Revtex, we added an appendix clarifying our assumptions about the initial conditions at the beggining of inflatio

    Noise induced transitions in semiclassical cosmology

    Get PDF
    A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field, which consists basically of a non local term due to gravitational particle creation and a noise term induced by the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the classical potential so that if the universe starts near zero scale factor (initial singularity) it can make the transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it turns out to be comparable with the probability that the universe tunnels from "nothing" into an inflationary stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the spacetime should not be neglected in quantum cosmology.Comment: LaTex, 33.tex pages, no figure

    Semiclassical Effects and the Onset of Inflation

    Full text link
    We present a class of exact solutions to the constraint equations of General Relativity coupled to a Klein - Gordon field, these solutions being isotropic but not homogeneous. We analyze the subsequent evolution of the consistent Cauchy data represented by those solutions, showing that only certain special initial conditions eventually lead to successfull Inflationary cosmologies. We argue, however, that these initial conditions are precisely the likely outcomes of quantum events occurred before the inflationary era.Comment: 22 pages, file written in RevTe

    Dissipation, noise and vacuum decay in quantum field theory

    Get PDF
    We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects of the interaction between long and short-wavelength modes. This interaction results in a diffusive behavior of the reduced Wigner function describing the state of the long-wavelength modes, and thereby to a finite activation rate even at zero temperature. This effect can make a substantial contribution to the total decay rate.Comment: 5 page

    Renormalization group and nonequilibrium action in stochastic field theory

    Full text link
    We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion.Comment: 33 pages, 3 figures included in the text. Revised; one reference adde
    corecore