We investigate the renormalization group approach to nonequilibrium field
theory. We show that it is possible to derive nontrivial renormalization group
flow from iterative coarse graining of a closed-time-path action. This
renormalization group is different from the usual in quantum field theory
textbooks, in that it describes nontrivial noise and dissipation. We work out a
specific example where the variation of the closed-time-path action leads to
the so-called Kardar-Parisi-Zhang equation, and show that the renormalization
group obtained by coarse graining this action, agrees with the dynamical
renormalization group derived by directly coarse graining the equations of
motion.Comment: 33 pages, 3 figures included in the text. Revised; one reference
adde