630 research outputs found

    VE-cadherin and claudin-5: it takes two to tango

    Get PDF
    Endothelial barrier function requires the adhesive activity of VE-cadherin and claudin-5, which are key components of adherens and tight endothelial junctions, respectively. Emerging evidence suggests that VE-cadherin controls claudin-5 expression by preventing the nuclear accumulation of FoxO1 and -catenin, which repress the claudin-5 promoter. This indicates that a crosstalk mechanism operates between these junctional structures

    Of autoregressive continuous time model parameters estimation

    Get PDF
    This article revisits a sequential approach to the estimation of the parameter in a first-order autoregressive model (AR(1)) with continuous time. There is provided a numerical study to get a results of sequential estimations of the parameter in first-order autoregressive model with continuous time and is computed a stopping rule and the optimal time of observations. Also there is provided a comparing analysis of estimation results with using the sequential approach both the optimal time of observations

    Acute Community-Acquired Diarrhea Requiring Hospital Admission in Swiss Children

    Get PDF
    In order to ascertain the prevalence of agents that cause childhood diarrheal illness, stool specimens of 312 consecutive children with community-acquired diarrhea requiring admission were evaluated. Pathogens were detected in 166 (53%) of the 312 children (≥2 pathogens in 28 children): Rotavirus (n=75), Salmonella spp. (n=37), Campylobacter spp. (n=24), Shigella spp. (n=5), Giardia spp. (n=4), Yersinia spp. (n=2), Aeromonas spp. (n=15), Cryptosporidium (n=15), enteropathogenic Escherichia coli (n=13), enterotoxigenic E. coli (n=7), and enterohemorrhagic E. coli (n=5). In conclusion, acute childhood diarrheal illness pathogens, such as Aeromonas, Cryptosporidium, and diarrheagenic E. coli, account for a large proportion of patients with a microbiologically positive stool specime

    Perinatal Exogenous Nitric Oxide in Fawn-Hooded Hypertensive Rats Reduces Renal Ribosomal Biogenesis in Early Life

    Get PDF
    Nitric oxide (NO) is known to depress ribosome biogenesis in vitro. In this study we analyzed the influence of exogenous NO on ribosome biogenesis in vivo using a proven antihypertensive model of perinatal NO administration in genetically hypertensive rats. Fawn-hooded hypertensive rat (FHH) dams were supplied with the NO-donor molsidomine in drinking water from 2 weeks before to 4 weeks after birth, and the kidneys were subsequently collected from 2 day, 2 week, and 9 to 10-month-old adult offspring. Although the NO-donor increased maternal NO metabolite excretion, the NO status of juvenile renal (and liver) tissue was unchanged as assayed by EPR spectroscopy of NO trapped with iron-dithiocarbamate complexes. Nevertheless, microarray analysis revealed marked differential up-regulation of renal ribosomal protein genes at 2 days and down-regulation at 2 weeks and in adult males. Such differential regulation of renal ribosomal protein genes was not observed in females. These changes were confirmed in males at 2 weeks by expression analysis of renal ribosomal protein L36a and by polysome profiling, which also revealed a down-regulation of ribosomes in females at that age. However, renal polysome profiles returned to normal in adults after early exposure to molsidomine. No direct effects of molsidomine were observed on cellular proliferation in kidneys at any age, and the changes induced by molsidomine in renal polysome profiles at 2 weeks were absent in the livers of the same rats. Our results suggest that the previously found prolonged antihypertensive effects of perinatal NO administration may be due to epigenetically programmed alterations in renal ribosome biogenesis during a critical fetal period of renal development, and provide a salient example of a drug-induced reduction of ribosome biogenesis that is accompanied by a beneficial long-term health effect in both males and females

    The dual endothelin converting enzyme/neutral endopeptidase inhibitor SLV-306 (daglutril), inhibits systemic conversion of big endothelin-1 in humans

    Get PDF
    Aims - Inhibition of neutral endopeptidases (NEP) results in a beneficial increase in plasma concentrations of natriuretic peptides such as ANP. However NEP inhibitors were ineffective anti-hypertensives, probably because NEP also degrades vasoconstrictor peptides, including endothelin-1 (ET-1). Dual NEP and endothelin converting enzyme (ECE) inhibition may be more useful. The aim of the study was to determine whether SLV-306 (daglutril), a combined ECE/NEP inhibitor, reduced the systemic conversion of big ET-1 to the mature peptide. Secondly, to determine whether plasma ANP levels were increased. Main methods - Following oral administration of three increasing doses of SLV-306 (to reach an average target concentration of 75, 300, 1200 ng ml− 1 of the active metabolite KC-12615), in a randomised, double blinded regime, big ET-1 was infused into thirteen healthy male volunteers. Big ET-1 was administered at a rate of 8 and 12 pmol kg− 1 min− 1 (20 min each). Plasma samples were collected pre, during and post big ET-1 infusion. ET-1, C-terminal fragment (CTF), big ET-1, and atrial natriuretic peptide (ANP) were measured. Key findings - At the two highest concentrations tested, SLV-306 dose dependently attenuated the rise in blood pressure after big ET-1 infusion. There was a significant increase in circulating big ET-1 levels, compared with placebo, indicating that SLV-306 was inhibiting an increasing proportion of endogenous ECE activity. Plasma ANP concentrations also significantly increased, consistent with systemic NEP inhibition. Significance - SLV-306 leads to inhibition of both NEP and ECE in humans. Simultaneous augmentation of ANP and inhibition of ET-1 production is of potential therapeutic benefit in cardiovascular disease

    Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific

    Get PDF
    Accumulation of triacylglycerol (TAG) and lipid intermediates in skeletal muscle plays an important role in the etiology of insulin resistance and type 2 diabetes mellitus. Disturbances in skeletal muscle lipid turnover and lipolysis may contribute significantly to this. So far, knowledge on the regulation of muscle lipolysis is limited. Recently the identification of a new lipase was reported: adipose triglyceride lipase (ATGL). ATGL deficient animals show significant lipid accumulation in skeletal muscle, which may indicate that ATGL plays a pivotal role in skeletal muscle lipolysis. However, until now, it is still unknown whether ATGL protein is expressed in human skeletal muscle. Therefore, the aim of the present study was to investigate whether ATGL is expressed at the protein level in human skeletal muscle, and to examine whether its expression is fiber-type specific. To accomplish this, we established an imunohistochemical and immunofluorescent staining procedure to study ATGL protein expression in relation to fiber type in human vastus lateralis muscle of eight male subjects (BMI range: 21.0–34.5 kg/m2 and age: 38–59 years). In the present paper we report for the first time that ATGL protein is indeed expressed in human skeletal muscle. Moreover, ATGL is exclusively expressed in type I (oxidative) muscle fibers, suggesting a pivotal role for ATGL in intramuscular fatty acid handling, lipid storage and breakdown

    Hypermutation of Immunoglobulin Genes in Memory B Cells of DNA Repair–deficient Mice

    Get PDF
    To investigate the possible involvement of DNA repair in the process of somatic hypermutation of rearranged immunoglobulin variable (V) region genes, we have analyzed the occurrence, frequency, distribution, and pattern of mutations in rearranged Vλ1 light chain genes from naive and memory B cells in DNA repair–deficient mutant mouse strains. Hypermutation was found unaffected in mice carrying mutations in either of the following DNA repair genes: xeroderma pigmentosum complementation group (XP)A and XPD, Cockayne syndrome complementation group B (CSB), mutS homologue 2 (MSH2), radiation sensitivity 54 (RAD54), poly (ADP-ribose) polymerase (PARP), and 3-alkyladenine DNA-glycosylase (AAG). These results indicate that both subpathways of nucleotide excision repair, global genome repair, and transcription-coupled repair are not required for somatic hypermutation. This appears also to be true for mismatch repair, RAD54-dependent double-strand–break repair, and AAG-mediated base excision repair

    Individualized early death and long-term survival prediction after stereotactic radiosurgery for brain metastases of non-small cell lung cancer:Two externally validated nomograms

    Get PDF
    Introduction Commonly used clinical models for survival prediction after stereotactic radiosurgery (SRS) for brain metastases (BMs) are limited by the lack of individual risk scores and disproportionate prognostic groups. In this study, two nomograms were developed to overcome these limitations. Methods 495 patients with BMs of NSCLC treated with SRS for a limited number of BMs in four Dutch radiation oncology centers were identified and divided in a training cohort (n = 214, patients treated in one hospital) and an external validation cohort n = 281, patients treated in three other hospitals). Using the training cohort, nomograms were developed for prediction of early death (<3 months) and long-term survival (>12 months) with prognostic factors for survival. Accuracy of prediction was defined as the area under the curve (AUC) by receiver operating characteristics analysis for prediction of early death and long term survival. The accuracy of the nomograms was also tested in the external validation cohort. Results Prognostic factors for survival were: WHO performance status, presence of extracranial metastases, age, GTV largest BM, and gender. Number of brain metastases and primary tumor control were not prognostic factors for survival. In the external validation cohort, the nomogram predicted early death statistically significantly better (p < 0.05) than the unfavorable groups of the RPA, DS-GPA, GGS, SIR, and Rades 2015 (AUC = 0.70 versus range AUCs = 0.51–0.60 respectively). With an AUC of 0.67, the other nomogram predicted 1 year survival statistically significantly better (p < 0.05) than the favorable groups of four models (range AUCs = 0.57–0.61), except for the SIR (AUC = 0.64, p = 0.34). The models are available on www.predictcancer.org. Conclusion The nomograms predicted early death and long-term survival more accurately than commonly used prognostic scores after SRS for a limited number of BMs of NSCLC. Moreover these nomograms enable individualized probability assessment and are easy into use in routine clinical practice

    Model-Based Selection for Proton Therapy in Breast Cancer:Development of the National Indication Protocol for Proton Therapy and First Clinical Experiences

    Get PDF
    Aims: Proton therapy is a radiation technique that yields less dose in normal tissues than photon therapy. In the Netherlands, proton therapy is reimbursed if the reduced dose to normal tissues is predicted to translate into a prespecified reduction in toxicity, based on nationally approved validated models. The aim of this paper is to present the development of a national indication protocol for proton therapy (NIPP) for model-based selection of breast cancer patients and to report on first clinical experiences. Materials and methods: A national proton therapy working group for breast cancer (PWG-BC) screened the literature for prognostic models able to estimate the individual risk of specific radiation-induced side-effects. After critical appraisal and selection of suitable models, a NIPP for breast cancer was written and subjected to comments by all stakeholders. The approved NIPP was subsequently introduced to select breast cancer patients who would benefit most from proton therapy. Results: The model of Darby et al. (N Engl J Med 2013; 368:987–82) was the only model fulfilling the criteria prespecified by the PWG-BC. The model estimates the relative risk of an acute coronary event (ACE) based on the mean heart dose. The absolute lifetime risk of ACE <80 years was calculated by applying this model to the Dutch absolute incidence of ACE for female and male patients, between 40 and 70 years at breast cancer radiotherapy, with/without cardiovascular risk factors. The NIPP was approved for reimbursement in January 2019. Based on a threshold value of a 2% absolute lower risk on ACE for proton therapy compared with photons, 268 breast cancer patients have been treated in the Netherlands with proton therapy between February 2019 and January 2021. Conclusion: The NIPP includes a model that allows the estimation of the absolute risk on ACE <80 years based on mean heart dose. In the first 2 years, 268 breast cancer patients have been treated with proton therapy in The Netherlands
    corecore