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Introduction: Commonly used clinical models for survival prediction after stereotactic radiosurgery (SRS)
for brain metastases (BMs) are limited by the lack of individual risk scores and disproportionate prognos-
tic groups. In this study, two nomograms were developed to overcome these limitations.
Methods: 495 patients with BMs of NSCLC treated with SRS for a limited number of BMs in four Dutch
radiation oncology centers were identified and divided in a training cohort (n = 214, patients treated in
one hospital) and an external validation cohort n = 281, patients treated in three other hospitals).
Using the training cohort, nomograms were developed for prediction of early death (<3 months) and
long-term survival (>12 months) with prognostic factors for survival. Accuracy of prediction was defined
as the area under the curve (AUC) by receiver operating characteristics analysis for prediction of early
death and long term survival. The accuracy of the nomograms was also tested in the external validation
cohort.
Results: Prognostic factors for survival were: WHO performance status, presence of extracranial metas-
tases, age, GTV largest BM, and gender. Number of brain metastases and primary tumor control were
not prognostic factors for survival. In the external validation cohort, the nomogram predicted early death
statistically significantly better (p < 0.05) than the unfavorable groups of the RPA, DS-GPA, GGS, SIR, and
Rades 2015 (AUC = 0.70 versus range AUCs = 0.51–0.60 respectively). With an AUC of 0.67, the other
nomogram predicted 1 year survival statistically significantly better (p < 0.05) than the favorable groups
of four models (range AUCs = 0.57–0.61), except for the SIR (AUC = 0.64, p = 0.34). The models are avail-
able on www.predictcancer.org.
Conclusion: The nomograms predicted early death and long-term survival more accurately than com-
monly used prognostic scores after SRS for a limited number of BMs of NSCLC. Moreover these nomo-
grams enable individualized probability assessment and are easy into use in routine clinical practice.

� 2017 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 123 (2017) 189–194
Stereotactic Radiosurgery (SRS) is an established treatment for a
limited number of brain metastases (BMs) with a maximum
diameter up to 4 cm [1]. To predict survival in BM patients, several
prognostic models have been published in the past decades [2–4].
The most commonly used is the Recursive Partitioning Analysis
(RPA), which is a relatively simple scoring system, initially
developed in patients who were treated with whole brain
radiotherapy (WBRT), and subsequently validated for other treat-
ment modalities [5]. RPA classification takes into account age,
presence of extracranial metastases, primary tumor control, and
performance status. The RPA divides the patient cohort into three
prognostic categories; however, a major disadvantage of the RPA
is that approximately two-third of patients suitable for SRS will fall
in the intermediate prognostic class, and probabilities for
both short and long-term survival are group-based and not
individualized [2]. Lack of individualized survival probability and
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disproportional size of prognostic groups were also observed in
other more recently published prognostic models for survival, such
as the Golden Grading System (GGS), Disease-Specific Graded
Prognostic Assessment (DS-GPA), Score Index for Radiosurgery in
brain metastases (SIR), and Rades 2015 [2,6–12]. With nomograms,
however, it is possible to assess individualized probabilities for
endpoints, and relevant prognostic factors can be evaluated. In this
study, two validated nomograms were developed for the predic-
tion of early death (<3 months) and long-term (>1 year) survival
of patients treated with SRS for a maximum of four BMs of NSCLC.
The rationales for these endpoints were that (1) accurate predic-
tion of early death can be relevant for SRS patient selection, and
(2) accurate prediction of long-term survival can be particularly
useful for the choice of either radical or palliative treatment of
extracranial disease [13,14].

Materials and methods

Data

This multicenter cohort study was approved by the local
institutional review board of MAASTRO clinic and registered at
ClinicalTrials.gov (NCT02265549). Clinical data were collected
from all patients with newly diagnosed BMs treated with linear
accelerator-based SRS between December 2002 and March 2015
in four participating Dutch Radiation Oncology centers: MAASTRO
clinic in Maastricht (MC), VU University medical center (VUmc) in
Amsterdam, Verbeeten Institute in Tilburg (VT), and Catharina
Hospital in Eindhoven (CZE). Patients were generally eligible for
SRS if they had a maximum of three BMs, with a maximum diam-
eter of 4 cm, on diagnostic magnetic resonance imaging (MRI) per-
formed by the referring hospital. Prior to treatment, a contrast
enhanced high-resolution MRI serving radiation planning purposes
was performed with three-dimensional distortion correction. If a
fourth BM was identified on this planning-MRI, three of the four
participating centers also treated these patients with SRS as the
single treatment modality. The gross tumor volume (GTV) was
defined as the contrast enhancement on the planning-MRI. An iso-
tropic margin of 1–3 mm was used to generate the planning target
volume (PTV) [15]. SRS dose was prescribed at the PTV in the range
of 15–24 Gy in one to three fractions. Treatment planning in VUmc
and CZE have been described previously [2,15]. MC used iPlan
(Brainlab AG, Feldkirchen, Germany) and Eclipse (Varian, Palo Alto)
software, and treatment planning was performed with
non-coplanar dynamic conformal arcs or coplanar volumetric
modulated arc therapy (VMAT). At VT, the XiO software (Elekta,
Stockholm, Sweden) was used for treatment planning, which was
accomplished with a non-coplanar static arcs technique or VMAT.
During follow-up, MRI scans were acquired every three months;
an outpatient visit was planned if both the physical and mental
conditions of the patient allowed it.
Variable selection

A database was available of all patients treated with SRS for
newly diagnosed brain metastases of several primary tumors
(n = 929) in four Dutch hospitals. For this study, patients with
BM of NSCLC from whom the date of death was known, or patients
with BM of NSCLC who had a follow-up of at least of 1 year were
selected (n = 495). In the training cohort (n = 214) Kaplan–Meier
analysis including multivariate Cox regression analysis was
performed on the baseline characteristics to identify significant
prognostic factors for survival. Dependent prognostic factors were
excluded from the multivariate analysis: PTV largest BM is
dependent on GTV largest BM; cumulative GTV is dependent on
GTV largest metastasis; and dose is dependent on GTV largest
BM. In the training cohort, the following baseline characteristics
were statistically significant prognostic factors for survival in mul-
tivariate cox regression analysis: WHO performance status
(p < 0.01, beta regression coefficient (b) = 0.41, odds ratio (OR) =
1.50, 95% confidence interval (95% CI) = 1.20–1.88), presence of
extracranial metastases (p < 0.01, b = 0.73, OR = 2.08, 95% CI =
1.44–3.00), age (p < 0.01, b = 0.03, OR = 1.03, 95% CI = 1.02–1.05),
GTV largest BM (p = 0.01, b = 0.03, OR = 1.03, 95% CI = 1.01–1.06),
and gender (p = 0.04, b = -0.35, OR = 0.70, 95% CI 0.51–0.98); Other
baseline characteristics were not prognostic for survival: primary
tumor control (p = 0.98), and number of treated BM (p = 0.18).
Nomograms

The patient cohort treated in the VUmc (n = 214) was used as
the training cohort for development of the two nomograms. The
other patient cohort (n = 281, patients treated in MC, VT, and
CZE) was used as an external validation cohort in which the two
developed nomograms were tested independently from the
training cohort. Prognostic factors for survival identified with Cox
multivariate analysis in the training cohort of patients (n = 214)
were used to develop the nomograms for the prediction of early
death (<3 months) and long-term survival (>1 year), respectively.
Nomograms were made based on logistic regression analysis and
learned on the VUmc cohort. The primary endpoint of this study
was the area under the curve (AUC) obtained using receiver oper-
ating characteristics (ROC) analysis for early death and long-term
survival prediction. In the training and validation cohorts, the AUCs
of the developed nomogrammodels were compared with the AUCs
of the RPA, DS-GPA, GGS, SIR, and Rades 2015 prognostic models.
Comparison of ROC curves was done using DeLong’s test for corre-
lated ROC curves. Statistical analyses were performed using SPSS
(version 23, IBM, New York), using R (version 3.1.3, R Foundation
for Statistical Computing, Vienna, Austria) using the rms, Pre-
dictABEL, and pROC packages. Validation was performed according
to established methods [16]. Calculating AUC confidence intervals
and calibration R2 values (predicted versus observed risk) was
done according previously described methods [17,18].

Results

Median survival of the total cohort of patients (n = 495) was
6.8 months. Baseline characteristics of the training (n = 214) and
validation (n = 281) cohorts are shown in Table 1.

The first developed nomogram specific for the prediction of
early death is shown in Fig. 1 containing the previously identified
prognostic factors for survival. With an AUC of 0.77, the nomogram
predicted early death statistically significantly better than the
unfavorable groups of the RPA, DS-GPA, GGS, SIR, and Rades
2015 (range AUC = 0.52–0.59). Similar results were observed in
the external validation cohort with an AUC = 0.70 of the nomogram
versus range AUCs = 0.51–0.60 with the other prognostic models,
Table 2). For the ROC curves of the nomogram, see Supplementary
materials 1. Calibration curves (predicted versus observed proba-
bility) of the nomogram are shown in Supplementary materials 2
with R2 values of 0.98 and 0.82 in respectively the training and val-
idation cohort.

The independently developed second nomogram is specific for
the prediction of long-term survival and shown in Fig. 2 containing
the same prognostic factors for survival, but otherwise ranked in
the nomogram. With an AUC = 0.77, this nomogram predicted
1 year survival statistically significantly better than the favorable
groups of the RPA, DS-GPA, GGS, SIR, and Rades 2015 in the train-
ing cohort (range AUCs = 0.55–0.68, Table 2). In the external vali-
dation cohort comparable results were observed with AUC = 0.67
of the nomogram versus range AUCs = 0.57–0.61, p < 0.05 of four



Table 1
Characteristics of training and validation cohort of 495 patients treated with SRS for
BM of NSCLC.

Training
cohort
n = 214

External validation
cohort
n = 281

Radiation Oncology center
VUmc 100% 0%
MC 0% 55%
VT 0% 25%
CE 0% 20%

Gender
Female 47% 46%
Male 53% 54%

Mean age ± SD (years) 63 ± 10 63 ± 11

WHO performance score
0 or 1 75% 83%
2 12% 16%
3 4% 1%
Unknown 9% 0%

Number of BM lesions
1 66% 64%
2 30% 24%
3 4% 11%
4 0% 1%

Extracranial metastases
Yes 38% 26%
No 62% 74%

Primary tumor control
Yes 41% 55%
No 59% 45%

Mean GTV of largest BM
(cm3) ± SD

6.8 ± 6.6 7.3 ± 7.9

RPA
Favorable 30% 33%
Intermediate 54% 60%
Unfavorable 16% 17%

DS-GPA
Favorable 7% 11%
Intermediate 87% 82%
Unfavorable 6% 7%

GGS
Favorable 29% 33%
Intermediate 67% 63%
Unfavorable 4% 4%

SIR
Favorable 29% 33%
Intermediate 69% 65%
Unfavorable 2% 2%

Rades 2015
Unfavorable 24% 25%
Favorable 76% 75%

Median survival (95% CI) 6.3 (5.0–7.6) 7.0 (6.0–8.1)

Death at 3 months 33% 24%

Alive at 1 year 36% 30%
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of the five other prognostic models (Table 2). Although the AUC of
the nomogram was higher than that of the favorable prognostic
group of the SIR (0.67 versus 0.64, p = 0.34), this difference was
not statistically significant. ROC curves of the nomogram are
provided in Supplementary materials 3. Calibration curves (pre-
dicted versus observed probability) of the nomogram are shown
in Supplementary materials 4 with R2 values of 0.97 and 0.76 in
respectively the training and validation cohort. The training cohort
was divided in three equal sized groups based on the probability of
1 year survival as determined by the nomogram. The probability
on 1 year survival per patient ranged in the first, second, and third
group respectively from <24%, 24–47%, and >47%. There was a
statistically significant difference in survival between the three risk
groups in both the training as the validation cohort with
Kaplan–Meyer analysis and log-rank test (p < 0.001, Supplemen-
tary materials 5). Long term survival over several years was mainly
seen in the favorable (>47% one year survival probability) groups of
both the training as the validation cohort. Regression coefficients
and other characteristics of both the nomogram for early death
prediction as the nomogram for long term survival prediction are
provided in Supplementary materials 6.

Discussion

Current published models for the prediction of survival of BM
patients treated with SRS have several limitations for clinical
applicability, and are mainly limited by the lack of individualized
probability assessment. Most published models were developed
in or included patients who were treated with other modalities
such as WBRT, surgery, or a combination of SRS and WBRT. These
models have an unbalanced patient distribution in common, with
only a small proportion of patients in the favorable- and unfavor-
able prognostic category, which are the most relevant for clinical
decision making. However, the major limitation is that none of
the prognostic models have an individualized probability assess-
ment of survival; rather, they distribute patients only according
to a prognostic groups, which is undesirable in the current era of
personalized medicine [2].

In this study, nomograms were developed for the prediction of
early death (<3 months) and long-term survival (>1 year), respec-
tively, in patients treated with SRS for BM of NSCLC. The models
were based on and validated in a homogeneous cohort of patients,
with a maximum of four BM lesions each, who were treated with
SRS alone in four Dutch radiation oncology centers. The nomogram
allows for an upfront calculation of the probability of early death
and long-term survival on an individual patient basis. Prediction
of early death is of relevance for patient selection for SRS to avoid
overtreatment of patients. Prediction of long-term survival is of
particular relevance when determining extracranial treatment
strategies. In patients with a relatively high chance of surviving
more than one year, more aggressive therapy for extracranial dis-
ease sites may be beneficial to maintain long-term quality of life
and disease control [19,20].

Our first nomogram predicts early death more accurately than
the unfavorable groups of the RPA, GGS, DS-GPA, SIR, and Rades
2015 in both the training as the validation cohorts. Our second
nomogram predicted long term survival more accurately than the
favorable groups of the RPA, DS-GPA, GGS, SIR, and Rades 2015
in the training cohort. It has to be noted that in the validation
cohort the nomogram predicted long term survival better than
the other prognostic models except the SIR. However, the nomo-
gram has still the advantage over the SIR that there is an individu-
alized probability assessment instead of a group based probability
assessment. Moreover, the nomogram is easier in use than the SIR
in routine clinical practice. It is important to further validate these
nomograms in other BM populations treated with SRS, within and
outside the Netherlands. Moreover, it is of interest to assess the
applicability of these nomogram models for patients with more
than four BM lesions, especially as the number of lesions was found
not to be an important prognostic factor in patients treated with
SRS alone in this study [21].

The choice to only include NSCLC patients in this model was
based on the fact that the proportion of other primary tumors
was relatively small in our database of in total 929 patients treated
with SRS for BM in four Dutch hospitals. Therefore, we questioned
the applicability of our nomograms for other primary tumors than
NSCLC. Combining datasets of patients treated with SRS for BM of
other primary tumors than NSCLC may allow the development of
predictive models per tumor type. The data to develop models



Fig. 1. Nomogram for prediction of early death based on outcome of 214 patients treated with SRS alone for BM of NSCLC. Legend: SRS = stereotactic radiosurgery, BM = brain
metastasis, NSCLC = non-small cell lung cancer, WHO =World Health Organization performance status, GTV = gross tumor volume, extramets = extracranial metastases.

Table 2
Accuracy of prediction of respectively early death (<3 months) and long term survival (>1 year) of two nomograms compared to the unfavorable and favorable prognostic groups
of the RPA, DS-GPA, GGS, SIR, and Rades 2015 using ROC analysis.

Early death prediction
(<3 months)

AUC in training cohort for early
death prediction
n = 214

p-Value compared to
nomogram

AUC in validation cohort for
early death prediction
n = 281

p-Value compared
to nomogram

Nomogram early death 0.79 (95% CI: 0.72–0.86) – 0.70 (95 CI: 0.63–0.77) –
RPA Unfavorable 0.59 (95% CI 0.52–0.65) p < 0.01 0.55 (95% CI 0.49–0.61) p < 0.01
DS-GPA Unfavorable 0.54 (95% CI 0.50–0.59) p < 0.01 0.56 (95% CI 0.51–0.61) p < 0.01
GGS Unfavorable 0.53 (95% CI 0.50–0.57) p < 0.01 0.54 (95% CI 0.50–0.57) p < 0.01
SIR Unfavorable 0.52 (95% CI 0.49–0.55) p < 0.01 0.51 (95% CI 0.49–0.53) p < 0.01
Rades 2015 Unfavorable 0.57 (95% CI 0.51–0.63) p < 0.01 0.60 (95% CI 0.56–0.65) p < 0.01

Long term survival
prediction (>1 year)

AUC in training cohort for long term
survival prediction n = 214

p-value compared to
nomogram

AUC in validation cohort for long term
survival prediction n = 281

p-value compared to
nomogram

Nomogram long term
survival

0.77 (95% CI: 0.70–0.84) – 0.67 (95% CI: 0.60–0.73) –

RPA favorable 0.66 (95% CI 0.60–0.73) p < 0.01 0.61 (95% CI 0.55–0.67) p = 0.04
DS-GPA Favorable 0.55 (95% CI 0.51–0.60) p < 0.01 0.57 (95% CI 0.52–0.62) p < 0.01
GGS Favorable 0.66 (95% CI 0.60–0.73) p < 0.01 0.61 (95% CI 0.55–0.67) p = 0.04
SIR Favorable 0.68 (95% CI 0.61–0.74) p < 0.01 0.64 (95% CI 0.58–0.71) p = 0.34
Rades 2015 Favorable 0.61 (95% CI 0.55–0.68) p < 0.01 0.60 (95% CI 0.54–0.66) p = 0.02
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for these outcomes is readily available from centers worldwide.
Unfortunately, sharing these data is hampered by political, legal,
ethical and administrative boundaries. In order to circumvent
these boundaries, a distributed learning approach can be employed
[22]. In the distributed learning approach, a model application is
sent to each hospital. There, the model learns from the data and
is sent back to the modeler. Each locally learned model is combined
into a global model that integrates the knowledge of all locally
learned models. Using this approach, privacy sensitive patient data
never leaves the center. In the future, we intend to use a dis-
tributed learning strategy to develop more nomogram models for
BM patients.

Despite the use of multiple relevant prognostic factors there is
still opportunity for improvement for the accuracy of the nomo-
grams. Further research should focus on improving the accuracy
of survival prediction by incorporating additional factors,
e.g., using radiographic analysis of the primary tumor or BM
(Radiomics), and assessing the value of biomarkers [23–27]. These
tools may contribute to more accurate survival prediction,
although clinical applicability may be complex and challenging.
Therefore, risk assessment based on clinical factors alone remains
valuable and relevant for many hospitals that do not have the
capacity to perform radiomics and/or biomarker analysis. Accurate
prediction of survival, local control, distant brain recurrence, and
toxicity is important for patients and clinicians regarding the
choice for treatment options; this is also known as shared decision
[28–33]. Shared decision will be possible if the patient is informed
by individualized probabilities for clear endpoints, such as early
death within 3 months and long term survival over 1 year. With
these probabilities available and guidance of the physician for



Fig. 2. Nomogram for prediction of long-term survival based on outcome of 214 patients treated with SRS alone for BM of NSCLC. Legend: SRS = stereotactic radiosurgery,
BM = brain metastasis, NSCLC = non-small cell lung cancer, WHO =World Health Organization performance status, GTV = gross tumor volume, extramets = extracranial
metastases.

J.D. Zindler et al. / Radiotherapy and Oncology 123 (2017) 189–194 193
interpretation, the patient together with his family may be able to
choose between treatment options. The limitations of our study are
the retrospective design and the risk of selection bias, although
the developed nomograms are based on outcome data in routine
clinical practice. These nomograms cannot be used for patients
with very large BM of more than 4 cm in diameter, patients
with more than 3 brain metastases, or patients treated with
other modalities than SRS alone for newly diagnosed BM of NSCLC.
The strength of our study is the external validation of both
nomograms.

In conclusion, two novel clinical nomogram models were
developed and validated for the prediction of respectively early
death (<3 months) and long-term (>1 year) survival after SRS for
patients with a maximum of four BMs of NSCLC. These nomogram
models can be used for individual probability assessments, and to
avoid the limitations of previously published prognostic classifica-
tion systems. The nomograms can be found at www.predictcancer.
org.
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