184 research outputs found
Intensification of the Amazon hydrological cycle over the last two decades
Reproduced with permission of the publisher. Online Open article. © 2013 American Geophysical UnionThe Amazon basin hosts half the planet's remaining moist tropical forests, but they may be threatened in a warming world. Nevertheless, climate model predictions vary from rapid drying to modest wetting. Here we report that the catchment of the world's largest river is experiencing a substantial wetting trend since approximately 1990. This intensification of the hydrological cycle is concentrated overwhelmingly in the wet season driving progressively greater differences in Amazon peak and minimum flows. The onset of the trend coincides with the onset of an upward trend in tropical Atlantic sea surface temperatures (SST). This positive longer-term correlation contrasts with the short-term, negative response of basin-wide precipitation to positive anomalies in tropical North Atlantic SST, which are driven by temporary shifts in the intertropical convergence zone position. We propose that the Amazon precipitation changes since 1990 are instead related to increasing atmospheric water vapor import from the warming tropical Atlantic
On the relationship between suspended sediment concentration, rainfall variability and groundwater: An empirical and probabilistic analysis for the Andean Beni River, Bolivia (2003-2016)
Fluvial sediment dynamics plays a key role in the Amazonian environment, with most of the sediments originating in the Andes. The Madeira River, the second largest tributary of the Amazon River, contributes up to 50% of its sediment discharge to the Atlantic Ocean, most of it provided by the Andean part of the Madeira basin, in particular the Beni River. In this study, we assessed the rainfall (R)-surface suspended sediment concentration (SSSC) and discharge (Q)-SSSC relationship at the Rurrenabaque station (200 m a.s.l.) in the Beni Andean piedmont (Bolivia). We started by showing how the R and Q relationship varies throughout the hydrological year (September to August), describing a counter-clockwise hysteresis, and went on to evaluate the R-SSSC and Q-SSSC relationships. Although no marked hysteresis is observed in the first case, a clockwise hysteresis is described in the second. In spite of this, the rating curve normally used (SSSC = aQb) shows a satisfactory R2 = 0.73 (p < 0.05). With regard to water discharge components, a linear function relates the direct surface flow Qs-SSSC, and a hysteresis is observed in the relationship between the base flow Qb and SSSC. A higher base flow index (Qb/Q) is related to lower SSSC and vice versa. This article highlights the role of base flow on sediment dynamics and provides a method to analyze it through a seasonal empirical model combining the influence of both Qb and Qs, which could be employed in other watersheds. A probabilistic method to examine the SSSC relationship with R and Q is also proposed. © 2019 by the authors
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50--1100 Hz and with the frequency's
time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight
months of the fifth LIGO science run (S5) have been used in this search, which
is based on a semi-coherent method (PowerFlux) of summing strain power.
Observing no evidence of periodic gravitational radiation, we report 95%
confidence-level upper limits on radiation emitted by any unknown isolated
rotating neutron stars within the search range. Strain limits below 1.E-24 are
obtained over a 200-Hz band, and the sensitivity improvement over previous
searches increases the spatial volume sampled by an average factor of about 100
over the entire search band. For a neutron star with nominal equatorial
ellipticity of 1.0E-6, the search is sensitive to distances as great as 500
pc--a range that could encompass many undiscovered neutron stars, albeit only a
tiny fraction of which would likely be rotating fast enough to be accessible to
LIGO. This ellipticity is at the upper range thought to be sustainable by
conventional neutron stars and well below the maximum sustainable by a strange
quark star.Comment: 6 pages, 1 figur
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
We report on a search for gravitational waves from the coalescence of compact
binaries during the third and fourth LIGO science runs. The search focused on
gravitational waves generated during the inspiral phase of the binary
evolution. In our analysis, we considered three categories of compact binary
systems, ordered by mass: (i) primordial black hole binaries with masses in the
range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses
in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes
with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional
constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0
M(sun) in the third and fourth science runs, respectively. Although the
detectors could probe to distances as far as tens of Mpc, no gravitational-wave
signals were identified in the 1364 hours of data we analyzed. Assuming a
binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4
M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9
yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for
binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black
holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure
Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs
We present the results of a search for short-duration gravitational-wave
bursts associated with 39 gamma-ray bursts (GRBs) detected by gamma-ray
satellite experiments during LIGO's S2, S3, and S4 science runs. The search
involves calculating the crosscorrelation between two interferometer data
streams surrounding the GRB trigger time. We search for associated
gravitational radiation from single GRBs, and also apply statistical tests to
search for a gravitational-wave signature associated with the whole sample. For
the sample examined, we find no evidence for the association of gravitational
radiation with GRBs, either on a single-GRB basis or on a statistical basis.
Simulating gravitational-wave bursts with sine-gaussian waveforms, we set upper
limits on the root-sum-square of the gravitational-wave strain amplitude of
such waveforms at the times of the GRB triggers. We also demonstrate how a
sample of several GRBs can be used collectively to set constraints on
population models. The small number of GRBs and the significant change in
sensitivity of the detectors over the three runs, however, limits the
usefulness of a population study for the S2, S3, and S4 runs. Finally, we
discuss prospects for the search sensitivity for the ongoing S5 run, and beyond
for the next generation of detectors.Comment: 24 pages, 10 figures, 14 tables; minor changes to text and Fig. 2;
accepted by Phys. Rev.
All-sky search for periodic gravitational waves in LIGO S4 data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50-1000 Hz and with the frequency's
time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO
science run (S4) have been used in this search. Three different semi-coherent
methods of transforming and summing strain power from Short Fourier Transforms
(SFTs) of the calibrated data have been used. The first, known as "StackSlide",
averages normalized power from each SFT. A "weighted Hough" scheme is also
developed and used, and which also allows for a multi-interferometer search.
The third method, known as "PowerFlux", is a variant of the StackSlide method
in which the power is weighted before summing. In both the weighted Hough and
PowerFlux methods, the weights are chosen according to the noise and detector
antenna-pattern to maximize the signal-to-noise ratio. The respective
advantages and disadvantages of these methods are discussed. Observing no
evidence of periodic gravitational radiation, we report upper limits; we
interpret these as limits on this radiation from isolated rotating neutron
stars. The best population-based upper limit with 95% confidence on the
gravitational-wave strain amplitude, found for simulated sources distributed
isotropically across the sky and with isotropically distributed spin-axes, is
4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches
on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C
parameter defined in equation 44 which led to its overestimate by 2^(1/4).
The correct values for the multi-interferometer, H1 and L1 analyses are 9.2,
9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of
the upper limits presented in the paper were affecte
- …